Summary The head is a complex integrated system that is implicated in many vital functions. As such, its morphology is impacted by different and sometimes conflicting demands. Consequently, head shape varies greatly depending on the environment and dietary ecology of an organism. Moreover, given its role in territory defence and mating in lizards, it is also subjected to strong sexual selection in these animals. We investigated the relationships between head shape, bite performance and diet in 14 of the 17 extant Bradypodion species to determine whether variation in diet can explain the observed diversity in bite force and head shape in this genus. We also evaluate differences between sexes in terms of the relationships between head shape, bite force and diet and predict tighter relationships in females given that the head in this sex is principally under natural selection. Our results show that there is indeed a correlation between head shape, diet and bite force, but the direction and magnitude are sex‐dependent. Whereas we observed a correlation between absolute bite force and head shape in both sexes, size‐corrected bite force was correlated with mandible and quadrate shape in females only. Despite strong correlations between bite force and prey hardness, and between prey hardness and head shape, we did not find any relationship between head shape and prey evasiveness. These data suggest that the cranial system in chameleons of the genus Bradypodion evolves under natural selection for the ability to eat large or hard prey. Moreover, significant differences in the ecomorphological relationships between the two sexes suggest that sexual selection plays a role in driving the evolution of bite force and head shape. These data suggest that ecomorphological relationships may be sex‐dependent.
Many animals show unique morphological and behavioural adaptations to specific habitats. In particular, variation in cranial morphology is known to influence feeding performance, which in turn influences dietary habits and, ultimately, fitness. Dietary separation is an important means of partitioning ecological niches and avoiding inter-and intraspecific competition. Consequently, differences in dietary resources may help explain phenotypic divergence in closely-related species occupying different habitats, as well as sexual dimorphism. We test this hypothesis on five phenotypic forms of a recent radiation of dwarf chameleons (Bradypodion) that vary extensively in habitat use and cranial morphology. By examining stomach contents, the dietary composition of each phenotypic form is compared to investigate potential differences in feeding strategies. Overall, chameleons in the present study exhibit considerable dietary overlap (at both inter-and intraspecific levels), indicating that diet is not a major driver of variation in cranial morphology within this radiation. However, the stomachs of closed-canopy females were found to contain more prey items than male stomachs, possibly indicating that females require a greater caloric intake than their male counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.