Summary The mechanisms of initiation and transmission of apomixis (asexual reproduction through seeds) in natural plant populations are important for understanding the evolution of reproductive variation. Here, we used the phylogenetic diversity of the genus Boechera (Brassicaceae), together with natural diversity in pollen types produced by apomictic lines, to test whether hybridization triggers the transition to asexuality, and whether a ‘triploid bridge’ is required for the formation of polyploid apomicts. We performed crosses between diploid sexual recipient and diploid apomictic donor lines and tested whether the mating system (interspecific hybridization vs intraspecific outcrossing) or pollen type (haploid vs diploid) influenced the transmission of apomixis from diploid apomictic donors into sexual recipients. We used genetic markers and flow cytometric analyses of embryo and endosperm in seeds to infer the reproductive mode. Within a single generation, initiation of both diploid and polyploid apomixis in sexual Boechera can occur. Diploid apomixis is transmitted through haploid pollen (infectious asexuality) and polyploids can form through multiple pathways. The three functional elements of apomixis occasionally segregate. Variation in pollen ploidy and the segregation of apomixis elements drive reproductive diversity of hybrids and outcrosses and can be utilized for apomixis initiation in crop breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.