The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous ‘symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host.
Genetic diversity of closely-related free-living microbes is widespread and underpins ecosystem functioning, but most evolutionary theories predict that it destabilizes intimate mutualisms. Indeed, symbiont strain diversity has long assumed to be restricted in intracellular bacteria associated with animals. Here, we sequenced the metagenomes and metatranscriptomes of 18 Bathymodiolus mussel individuals from four species, covering their known distribution range at deep-sea hydrothermal vents in the Atlantic. We show that as many as 16 strains of intracellular, sulfuroxidizing symbionts coexist in individual Bathymodiolus mussels. Co-occurring symbiont strains differed extensively in key metabolic functions, such as the use of energy and nutrient sources, electron acceptors and viral defense mechanisms. Most strain-specific genes were expressed, highlighting their adaptive potential. We show that fine-scale diversity is pervasive in Bathymodiolus symbionts, and hypothesize that it may be widespread in low-cost symbioses where the environment, not the host, feeds the symbionts.
Flavobacteria and Enterobacteriaceae have been previously reported as scale insect endosymbionts. The purpose of this work was twofold: first, to screen different scale insect families for the presence of these endosymbionts by PCR analyses and second, to elucidate the history of cophylogeny between these bacteria and the insects by analysing a portion of 16S rRNA and 18S rRNA gene sequences by two reconciliation tools, CoRe-PA and Jane. From a survey of 27 scale insects within seven families, we identified Flavobacteria and Enterobacteriaceae as coexisting in ten species that belong to the Ortheziidae, Monophlebidae, Diaspididae and Coccidae families, and we frequently found two closely related enterobacteria harboured in the same individual. Analyses performed with CoRe-PA and Jane suggest that Flavobacteria from the scale insects analysed have a unique origin, except for Candidatus Brownia rhizoecola (Flavobacteria of Pseudococcidae, Phenacoccinae), which seems to come from a nonscale insect. Nevertheless, cospeciation between Flavobacteria and scale insects is suggested only within the families Monophlebidae, Ortheziidae and Diaspididae, and host switches seem to have occurred from the ancestors of Monophlebidae and Ortheziidae to insects from families Coccidae, Lecanodiaspididae, Eriococcidae and Pseudococcidae. Our analyses suggest that Enterobacteriaceae underwent more evolutionary events (losses, duplications and host switches), and their phylogenies showed a lower proportion of congruent nodes between host and bacteria, indicating a more relaxed relationship with scale insects compared with Flavobacteria.
Sponges host a remarkable diversity of microbial symbionts, however, the benefit their microbes provide is rarely understood. Here, we describe two new sponge species from deep-sea asphalt seeps and show that they live in a nutritional symbiosis with methane-oxidizing (MOX) bacteria. Metagenomics and imaging analyses revealed unusually high amounts of MOX symbionts in hosts from a group previously assumed to have low microbial abundances. These symbionts belonged to the Marine Methylotrophic Group 2 clade. They are host-specific and likely vertically transmitted, based on their presence in sponge embryos and streamlined genomes, which lacked genes typical of related free-living MOX. Moreover, genes known to play a role in host–symbiont interactions, such as those that encode eukaryote-like proteins, were abundant and expressed. Methane assimilation by the symbionts was one of the most highly expressed metabolic pathways in the sponges. Molecular and stable carbon isotope patterns of lipids confirmed that methane-derived carbon was incorporated into the hosts. Our results revealed that two species of sponges, although distantly related, independently established highly specific, nutritional symbioses with two closely related methanotrophs. This convergence in symbiont acquisition underscores the strong selective advantage for these sponges in harboring MOX bacteria in the food-limited deep sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.