Bread is mainly made from wheat but also from other cereals such as rye and oats. We here report on the role of dough liquor (DL) proteins and lipids in determining the stability of gas cell air-water (A-W) interfaces in wheat, rye, and oat bread making. Surprisingly, most lipids in DLs of these cereals are nonpolar. Their main polar DL lipids are phospholipids. Lipids at wheat and rye DL stabilized A-W interfaces impair interactions between its proteins, as reflected by an increased A-W interfacial shear viscosity of the adsorbed film upon defatting. In contrast, removing most lipids from oat DL pronouncedly increased the A-W interface surface tension, demonstrating that lipids are the prominent adsorbed species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.