Commercialization of Brassica napus. L (oilseed rape) meal as protein diet is gaining more attention due to its well-balanced amino acid and protein contents. Phytic acid (PA) is a major source of phosphorus in plants but is considered as anti-nutritive for monogastric animals including humans due to its adverse effects on essential mineral absorption. The undigested PA causes eutrophication, which potentially threatens aquatic life. PA accounts to 2-5% in mature seeds of oilseed rape and is synthesized by complex pathways involving multiple enzymes. Breeding polyploids for recessive traits is challenging as gene functions are encoded by several paralogs. Gene redundancy often requires to knock out several gene copies to study their underlying effects. Therefore, we adopted CRISPR-Cas9 mutagenesis to knock out three functional paralogs of BnITPK. We obtained low PA mutants with an increase of free phosphorus in the canola grade spring cultivar Haydn. These mutants could mark an important milestone in rapeseed breeding with an increase in protein value and no adverse effects on oil contents.
No abstract
Comparative genome analyses of eukaryotic pathogens including fungi and oomycetes have revealed extensive variability in genome composition and structure. The genomes of individuals from the same population can exhibit different numbers of chromosomes and different organization of chromosomal segments, defining so-called accessory compartments that have been shown to be crucial to pathogenicity in plant-infecting fungi. This high level of structural variation confers a methodological challenge for population genomic analyses. Variant discovery from population sequencing data is typically achieved using established pipelines based on the mapping of short reads to a reference genome. These pipelines have been developed, and extensively used, for eukaryote genomes of both plants and animals, to retrieve single nucleotide polymorphisms and short insertions and deletions. However, they do not permit the inference of large-scale genomic structural variation, as this task typically requires the alignment of complete genome sequences. Here, we compare traditional variant discovery approaches to a pipeline based on de novo genome assembly of short read data followed by whole genome alignment, using simulated data sets with properties mimicking that of fungal pathogen genomes. We show that the latter approach exhibits levels of performance comparable to that of read-mapping based methodologies, when used on sequence data with sufficient coverage. We argue that this approach further allows additional types of genomic diversity to be explored, in particular as longread third-generation sequencing technologies are becoming increasingly available to generate population genomic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.