Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite-and perhaps because of-their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb's residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer's paretic limb to facilitate an immediate 5.33 ± 0.91°increase in the paretic ankle's swing phase dorsiflexion and 11 ± 3% increase in the paretic limb's generation of forward propulsion (P < 0.05). These improvements in paretic limb function contributed to a 20 ± 4% reduction in forward propulsion interlimb asymmetry and a 10 ± 3% reduction in the energy cost of walking, which is equivalent to a 32 ± 9% reduction in the metabolic burden associated with poststroke walking. Relatively low assistance (~12% of biological torques) delivered with a lightweight and nonrestrictive exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke.
Instrumented treadmills are increasingly used in gait research, although the imposed walking speed is suggested to affect gait performance. A feedback-controlled treadmill that allows subjects to walk at their preferred speed, i.e. functioning in a self-paced (SP) mode, might be an attractive alternative, but could disturb gait through accelerations of the belt. We compared SP with fixed speed (FS) treadmill walking, and also considered various feedback modes. Nineteen healthy subjects walked on a dual-belt instrumented treadmill. Spatio-temporal, kinematic and kinetic gait parameters were derived from both the average stride patterns and stride-to-stride variability. For 15 out of 70 parameters significant differences were found between SP and FS. These differences were smaller than 1cm, 1°, 0.2 Nm and 0.2 W/kg for respectively stride length and width, joint kinematics, moments and powers. Since this is well within the normal stride variability, these differences were not considered to be clinically relevant, indicating that SP walking is not notably affected by belt accelerations. The long-term components of walking speed variability increased during SP walking (43%, p<0.01), suggesting that SP allows for more natural stride variability. Differences between SP feedback modes were predominantly found in the timescales of walking speed variability, while the gait pattern was similar between modes. Overall, the lack of clinically significant differences in gait pattern suggests that SP walking is a suitable alternative to fixed speed treadmill walking in gait analysis.
For targeted prevention of falls, it is necessary to identify individuals with balance impairments. To test the sensitivity of measures of variability, local stability and orbital stability of trunk kinematics to balance impairments during gait, we used galvanic vestibular stimulation (GVS) to impair balance in 12 young adults while walking on a treadmill at different speeds. Inertial sensors were used to measure trunk accelerations, from which variability in the medio-lateral direction and local and orbital stability were calculated. The short-term Lyapunov exponent and variability reflected the destabilizing effect of GVS, while the long-term Lyapunov exponent and Floquet multipliers suggested increased stability. Therefore, we concluded that only short-term Lyapunov exponents and variability can be used to asses stability of gait. In addition, to investigate the feasibility of using these measures in screening for fall risk, the presence or absence of GVS was predicted with variability and the short-term Lyapunov exponent. Predictions were good at all walking speeds, but best at preferred walking speed, with a correct classification in 83.3% of the cases.
Background and purpose To support clinical decision‐making in central neurological disorders, a physical examination is used to assess responses to passive muscle stretch. However, what exactly is being assessed is expressed and interpreted in different ways. A clear diagnostic framework is lacking. Therefore, the aim was to arrive at unambiguous terminology about the concepts and measurement around pathophysiological neuromuscular response to passive muscle stretch. Methods During two consensus meetings, 37 experts from 12 European countries filled online questionnaires based on a Delphi approach, followed by plenary discussion after rounds. Consensus was reached for agreement ≥75%. Results The term hyper‐resistance should be used to describe the phenomenon of impaired neuromuscular response during passive stretch, instead of for example ‘spasticity’ or ‘hypertonia’. From there, it is essential to distinguish non‐neural (tissue‐related) from neural (central nervous system related) contributions to hyper‐resistance. Tissue contributions are elasticity, viscosity and muscle shortening. Neural contributions are velocity dependent stretch hyperreflexia and non‐velocity dependent involuntary background activation. The term ‘spasticity’ should only be used next to stretch hyperreflexia, and ‘stiffness’ next to passive tissue contributions. When joint angle, moment and electromyography are recorded, components of hyper‐resistance within the framework can be quantitatively assessed. Conclusions A conceptual framework of pathophysiological responses to passive muscle stretch is defined. This framework can be used in clinical assessment of hyper‐resistance and will improve communication between clinicians. Components within the framework are defined by objective parameters from instrumented assessment. These parameters need experimental validation in order to develop treatment algorithms based on the aetiology of the clinical phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.