Climate change-induced rise of air temperatures and the increase of extreme climatic events, such as droughts, will largely affect plant growth and hydraulics, leading to mortality events all over the globe. In this study, we investigated the growth and hydraulic responses of seedlings of contrasting functional types. Pinus sylvestris, Quercus spp. and Castanea sativa seedlings were grown in a common garden experiment under four treatments: control, air warming, drought and their combination during two consecutive growing periods. Height and diameter increments, stomatal conductance and stem water potentials were measured during both growing seasons. Additionally, hydraulic parameters such as xylem-specific native and maximum hydraulic conductivities, and native percentage of loss of conductivity were measured at the end of the entire experiment. Our results clearly pointed to different adaptive strategies of the studied species. Scots pine displayed a relatively isohydric behavior with a strict stomata control prohibiting native embolism whereas sweet chestnut and oak as relatively anisohydric species displayed an increased loss of native conductivity as a results of low water potentials. Seasonal timing of shoot and diameter growth also differed among functional types influencing drought impacts. Additionally, the possibility of embolism reversal seemed to be limited under the study conditions.
Key message
Extremely high fine root mortalities were observed under drought in 2018, increasing fine root mortality in young trees could be explained by differences in root distribution compared to old trees.
Abstract
Juvenile trees in floodplains are prone to high mortality leading to a low success in reforestation in these habitats. One of the reasons contributing to high mortality of juvenile trees could be limited water and nutrient uptake due to a high level of fine root mortality, especially during summer droughts on higher terraces of floodplains. Strategies of different tree species in hardwood floodplain forests (HFFs) on keeping fine roots alive are still poorly understood. During the record-breaking summer drought of 2018, we examined the relationship between tree age and fine root dynamics of Quercus robur and Ulmus laevis along the Elbe River in Germany. Root area index (RAI), live root density (LRD) and relative root mortality (RRM) of young and old Q. robur and U. laevis were analysed by taking soil cores three times during the progression of a summer drought. Old oaks had a lower RAI in the upper soil than young oaks, while RAI of elms did not differ between young and old trees. RRM was very high during summer reaching more than 100% on average. RRM of young trees of both species increased with increasing drought during summer, while RRM of old trees did not change. We argue that differences in the response of RAI between oaks and elms reflect the sink competition between growing deep roots and shallow roots, which is pronounced in oaks due to their characteristic tap root system. Differences in root distribution patterns and the ability to perform hydraulic redistribution may explain the differences in RRM between trees of different species and ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.