At present, optimization algorithms are used extensively. One particular type of such algorithms includes random-based heuristic population optimization algorithms, which may be created by modeling scientific phenomena, like, for example, physical processes. The present article proposes a novel optimization algorithm based on Hooke’s law, called the spring search algorithm (SSA), which aims to solve single-objective constrained optimization problems. In the SSA, search agents are weights joined through springs, which, as Hooke’s law states, possess a force that corresponds to its length. The mathematics behind the algorithm are presented in the text. In order to test its functionality, it is executed on 38 established benchmark test functions and weighed against eight other optimization algorithms: a genetic algorithm (GA), a gravitational search algorithm (GSA), a grasshopper optimization algorithm (GOA), particle swarm optimization (PSO), teaching–learning-based optimization (TLBO), a grey wolf optimizer (GWO), a spotted hyena optimizer (SHO), as well as an emperor penguin optimizer (EPO). To test the SSA’s usability, it is employed on five engineering optimization problems. The SSA delivered better fitting results than the other algorithms in unimodal objective function, multimodal objective functions, CEC 2015, in addition to the optimization problems in engineering.
Regular assessments of events taking place around the globe can be a conduit for the development of new ideas, contributing to the research world. In this study, the authors present a new optimization algorithm named doctor and patient optimization (DPO). DPO is designed by simulating the process of treating patients by a physician. The treatment process has three phases, including vaccination, drug administration, and surgery. The efficiency of the proposed algorithm in solving optimization problems compared to eight other optimization algorithms on a benchmark standard test function with 23 objective functions is been evaluated. The results obtained from this comparison indicate the superiority and quality of DPO in solving optimization problems in various sciences. The proposed algorithm is successfully applied to solve the energy commitment problem for a power system supplied by a multiple energy carriers system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.