Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by mutations in the astrocytic filament gene GFAP. While astrocytes are thought to have important roles in controlling myelination, AxD animal models do not recapitulate critical myelination phenotypes and it is therefore not clear how AxD astrocytes contribute to leukodystrophy. Here, we show that AxD patient iPSC-derived astrocytes recapitulate key features of AxD pathology such as GFAP aggregation. Moreover, AxD astrocytes inhibit proliferation of human iPSC-derived oligodendrocyte progenitor cells (OPCs) in co-culture and reduce their myelination potential. CRISPR/Cas9-based correction of GFAP mutations reversed these phenotypes. Transcriptomic analyses of AxD astrocytes and postmortem brains identified CHI3L1 as a key mediator of AxD astrocyte-induced inhibition of OPC activity. Thus, this iPSC-based model of AxD not only recapitulates patient phenotypes not observed in animal models, but also reveals mechanisms underlying disease pathology and provides a platform for assessing therapeutic interventions.
Background: Why only a few follicles are activated to enter the growing follicle pool each wave remains unclear. Results: TGF- regulates oocyte growth through p70 S6 kinase 1/ribosomal protein S6 signaling. Conclusion: TGF- participates in maintenance of the primordial follicle pool. Significance: Learning how TGF- acts on primordial follicle growth.
In mammalian ovaries, a fixed population of primordial follicles forms during the perinatal stage and the oocytes contained within are arrested at the dictyate stage of meiotic prophase I. In the current study, we provide evidence that the level of cyclic AMP (cAMP) in oocytes regulates oocyte meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Our results show that the early meiotic development of oocytes is closely correlated with increased levels of intra-oocyte cAMP. Inhibiting cAMP synthesis in fetal ovaries delayed oocyte meiotic progression and inhibited the disassembly and degradation of synaptonemal complex protein 1. In addition, inhibiting cAMP synthesis in in vitro cultured fetal ovaries prevented primordial follicle formation. Finally, using an in situ oocyte chromosome analysis approach, we found that the dictyate arrest of oocytes is essential for primordial follicle formation under physiological conditions. Taken together, these results suggest a role for cAMP in early meiotic development and primordial follicle formation in the mouse ovary.
Canavan disease (CD) is a fatal leukodystrophy caused by mutation of the aspartoacylase (ASPA) gene, which leads to deficiency in ASPA activity, accumulation of the substrate N-acetyl-L-aspartate (NAA), demyelination, and spongy degeneration of the brain. There is neither a cure nor a standard treatment for this disease. In this study, human induced pluripotent stem cell (iPSC)-based cell therapy is developed for CD. A functional ASPA gene is introduced into patient iPSC-derived neural progenitor cells (iNPCs) or oligodendrocyte progenitor cells (iOPCs) via lentiviral transduction or TALEN-mediated genetic engineering to generate ASPA iNPC or ASPA iOPC. After stereotactic transplantation into a CD (Nur7) mouse model, the engrafted cells are able to rescue major pathological features of CD, including deficient ASPA activity, elevated NAA levels, extensive vacuolation, defective myelination, and motor function deficits, in a robust and sustainable manner. Moreover, the transplanted mice exhibit much prolonged survival. These genetically engineered patient iPSC-derived cellular products are promising cell therapies for CD. This study has the potential to bring effective cell therapies, for the first time, to Canavan disease children who have no treatment options. The approach established in this study can also benefit many other children who have deadly genetic diseases that have no cure.
Physiologically, the size of the primordial follicle pool determines the reproductive lifespan of female mammals, while its establishment largely depends on a process of germline cyst breakdown during the perinatal period. The mechanisms regulating this process are poorly understood. Here we demonstrate that c-Jun amino-terminal kinase (JNK) signaling is crucial for germline cyst breakdown and primordial follicle formation. JNK was specifically localized in oocytes and its activity increased as germline cyst breakdown progressed. Importantly, disruption of JNK signaling with a specific inhibitor (SP600125) or knockdown technology (Lenti-JNK-shRNAs) resulted in significantly suppressed cyst breakdown and primordial follicle formation in cultured mouse ovaries. Our results show that E-cadherin is intensely expressed in germline cysts, and that its decline is necessary for oocyte release from the cyst. However, inhibition of JNK signaling leads to aberrantly enhanced localization of E-cadherin at oocyte-oocyte contact sites. WNT4 expression is upregulated after SP600125 treatment. Additionally, similar to the effect of SP600125 treatment, WNT4 overexpression delays cyst breakdown and is accompanied by abnormal E-cadherin expression patterns. In conclusion, our results suggest that JNK signaling, which is inversely correlated with WNT4, plays an important role in perinatal germline cyst breakdown and primordial follicle formation by regulating E-cadherin junctions between oocytes in mouse ovaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.