Characterization of the adhesive penetration behavior in wood is highly desired for optimizing the manufacturing processes and product properties. In this study, modified urea-formaldehyde (UF) adhesive was used to prepare glued laminated timber (Cryptomeria fortunei Hooibrenk). The depth of gross penetration was measured by fluorescence microscopy (FM), which showed the UF passed through 1.5 to 3.5 earlywood tracheids (with an average penetration depth of 88.95 ± 27.49 μm) or 0.5 to 4.0 latewood tracheids (with an average penetration depth of 36.39 ± 15.14 μm). In addition, the distribution of cell wall penetration was observed clearly by confocal laser scanning microscopy (CLSM). The adhesive was found to diffuse into the cell walls of surface tissues embedded in the UF. To verify the results from CLSM, the mechanical properties of cell walls with and without adhesive penetration were measured through nanoindentation (NI). The reduced elastic modulus of exposed cell walls (18.10 GPa) was roughly equal to that of fully filled cell walls (17.68 GPa) but significantly greater than that of reference ones (15.71 GPa). The hardness showed a similar variation trend for these three types of cell walls. Combining the three techniques, both the microstructure and micromechanics of the adhesive penetration behavior can be quantitatively identified in a complementary manner.
Emulsion polymer isocyanate (EPI) and urea-formaldehyde (UF) were selected as typical resin systems to investigate the microstructure of wood-adhesive interphases by fluorescence microscopy (FM) and confocal laser scanning microscopy (CLSM). Further, a quantitative micromechanical analysis of the interphases was conducted using nanoindentation. The FM results showed that the UF resin could penetrate the wood to a greater extent than the EPI resin, and that the average penetration depth for these two resin systems was higher in the case of latewood. CLSM allowed visualization of the resin distribution with contrasting colors, showing that the EPI resin could not penetrate the cell wall, whereas UF resin could enter the cell walls. The micromechanical properties of the cell walls were almost unaffected by EPI penetration but were significantly affected by UF penetration, especially in the first cell wall from the glueline. This further confirmed that only cell walls with resin penetration can improve the mechanical properties of the interphase regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.