Long noncoding RNAs (lncRNAs) regulate gene expression. We investigated the role of lncRNAs in the inflammatory response to bacterial infection in the lungs. We identified the lncRNA MEG3 as a tissue-specific modulator of inflammatory responses during bacterial infection. Among the 10 transcript isoforms of MEG3, transcript 4 (referred to as MEG3-4) encodes the isoform with the lowest abundance in mouse lungs. Nonetheless, we found that MEG3-4 bound to the microRNA miR-138 in a competitive manner with mRNA encoding the proinflammatory cytokine interleukin-1β (IL-1β), thereby increasing IL-1β abundance and intensifying inflammatory responses to bacterial infection in alveolar macrophages and lung epithelial cells in culture and in lung tissue in mice. MEG3-4-mediated sponging of miR-138 in the cytoplasm increased the autocrine activity of IL-1β that subsequently induced a negative feedback mechanism mediated by nuclear factor κB that decreased MEG3-4 abundance and inflammatory cytokine production. This timely reduction in MEG3-4 abundance tempered proinflammatory responses in mice with pulmonary bacterial infection, preventing the progression to sepsis. Together, these findings reveal that MEG3-4 dynamically modulates pulmonary inflammatory responses through transcriptional regulation of immune response genes, extending the decoy and sponge mechanism associated with lncRNAs to antibacterial immunity, which affects both response and disease progression.
Sepsis is a progressive disease manifesting excessive inflammatory responses, severe tissue injury, organ dysfunction, and, ultimately, mortality. Since currently, there are limited therapeutic options for this disease, further understanding the molecular pathogenesis of sepsis may help develop effective treatments. Here we identify a novel role for Annexin A2 (AnxA2), a multi-compartmental protein, in inhibiting pro-inflammatory response by regulating reactive oxygen species (ROS) and IL-17 signaling during sepsis. In cecal ligation and puncture (CLP) sepsis models, anxa2
-/- mice manifested increased pro-inflammatory cytokines and neutrophil infiltration, but decreased bacterial clearance and animal survival. In addition, AnxA2 deficiency led to intensified ROS and IL-17A. Using site directed mutagenesis, we uncovered that cysteine 9 of AnxA2 was the most important aa (site) for regulation of ROS levels. Furthermore, ROS appears to be responsible for elevated IL-17A levels and subsequently exaggerated inflammatory response. Depletion of IL-17 via CRISPR/Cas9 KO strategy down-regulated inflammation and conferred protection against sepsis in anxa2
-/- mice. Our findings reveal a previously undemonstrated function for AnxA2 in inflammatory response in polymicrobial sepsis models via an AnxA2-ROS-IL-17 axis, providing insight into the regulation of pathophysiology of sepsis.
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn−/− mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn−/− mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.