Knowledge on the reproductive biology of cassava, relevant to breeders and molecular geneticists, is still limited. Therefore, different studies were carried out to determine the duration of stigma receptivity and the rate of pollen tube growth. Inflorescences were covered for up to 3 days after the first opening of the bracts (e.g. anthesis day) to prevent open pollination. Results indicate that fruit and seed set are drastically reduced when flowers were covered for 2 or 3 days. However, fruits and seeds were obtained even from flowers that had been covered for 3 days after anthesis, although at low frequency. The rate of pollen tube growth was assessed in many combinations of female and male progenitors crossed through controlled pollinations and collecting the pistils at varying hours after pollination (HAP). Pollen tube growth is fast during the first 6 HAP reaching the tip of the nucellar beak. The growth slows down thereafter, taking 10 additional hours to reach the end of the beak. The growth of pollen tubes slows down even further until they enter the embryo sac. Only 10% of samples showed pollen tubes entering the embryo sac between 48 and 66 HAP. Although several tubes may reach the nucellar beak, only one was observed entering the embryo sac. Results, across the different experiments, were highly variable suggesting that the timeline of fertilization is influenced both by genotypic and environmental factors as well as the manual manipulation of inflorescences and cyathia.
Flowering in cassava is related to branching. Erect plant architecture is usually preferred by farmers but results in late and scarce flowering, which slows down breeding and genetic studies. The objective of this study was to induce earlier and more abundant flowering, which have become key research needs for cassava. Six non-or late-flowering genotypes were selected for grafting on a profuse, early flowering understock. Grafted stems did not branch and flower while attached to the understock. Four cuttings from each grafted stem were taken and planted the following season. Paired-row cuttings from non-grafted stems of the same genotypes were planted as checks. Three phenotypic responses to grafting were found. One genotype failed to branch and flower, independently of the origin of the cuttings. Four genotypes branched but did not produce flowers. However, plants from grafted cuttings tended to branch earlier, particularly after the second branching event. Finally, in one genotype, grafting induced not only earlier branching but also earlier and more abundant production of flowers, fruits and seeds than their counterparts of plants from non-grafted stems. This is the first report of grafting effects on the induction of earlier flowering in cassava. Results indicated a delayed effect of grafting which was genotype-dependent based on materials used in this study. The contrasting responses to grafting may be useful for understanding the effect of plant growth regulators and photoperiod manipulations of ongoing research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.