Transgenic mice that overexpressed IGFBP-1 are hyperinsulinemic in the first week of life and gradually develop fasting hyperglycemia. In adult transgenic mice, the hypoglycemic response to IGF-I but not insulin or des (1-3) IGF-I was attenuated ( P Ͻ 0.05) compared with wild-type mice. Furthermore, in isolated adipocytes from transgenic mice, the stimulatory effect of IGF-I but not insulin on 2-deoxy-[ 3 H]-glucose uptake was reduced ( P Ͻ 0.02). In contrast, in isolated soleus muscle, the effects of both IGF-I and insulin on 2-deoxy-3 H-glucose uptake and on [ 3 H]-glucose incorporation into glycogen were significantly reduced compared to wild-type mice. The decline in specific activity of the 2-deoxy-3 H-glucose, a measure of glucose appearance in the circulation, was more marked in transgenic animals ( P Ͻ 0.05). In addition, tissue uptake of glucose was significantly higher in diaphragm, heart, intestine, liver, soleus muscle, and adipose tissue from fasting transgenic mice. Plasma concentrations of alanine, lysine, and methionine were also elevated in transgenic mice. These data suggest that overexpression of IGFBP-1 attenuates the hypoglycemic effect of endogenous IGF-I, which is initially compensated for by enhanced pancreatic insulin production. However, in adult mice pancreatic insulin content is reduced, insulin resistance is demonstrable in skeletal muscle and fasting hyperglycemia develops. ( J. Clin. Invest. 1996. 98: 1818-1825.) Key words: diabetes • IGF-I • insulin • 2-deoxyglucose uptake • pancreatic islets
Differentiation of precursor cells into mature fat cells is accompanied by enhanced expression of insulin-like growth factor (IGF)-I and is stimulated by multiple hormones including growth hormone, glucocorticoids, IGF-I and insulin. We used transgenic mice that overexpress insulin-like growth factor binding protein-1 to investigate the role of IGF-I in the accumulation of fat tissue. In response to a sucrose-enriched diet, transgenic mice gained significantly less body weight and the epididymal fat mass was significantly reduced compared with wild-type mice. The increase in adipocyte size was also significantly reduced in transgenic mice compared with wild-type mice. Fewer colonies were generated from adipose tissue from transgenic mice and the mitogenic response of these cells to IGF-I was significantly reduced compared with those from wild-type mice. Induction of glycerol-3-phosphate dehydrogenase, a measure of adipocyte differentiation, by IGF-I but not insulin, was reduced in preadipocytes from transgenic mice. These data indicate that IGF-I has a critical role in the proliferation of adipocyte precursors, the differentiation of preadipocytes and the development of obesity in response to calorie excess.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.