The paper discusses the key stages of developing an integrated methodology for predicting the stress-strain state of a sand-polymer mandrel-plastic shell system during heat treatment with the adaptation of experimentally determined viscoelastic characteristics of components in the CAE ANSYS Mechanical APDL package. The first stage solves the problem of determining the effective viscoelastic characteristics for the shell. Viscoelastic characteristics are determined on the basis of the developed complex experimental calculation method based on the solution of boundary quasistatic problems of thermomechanics on a representative volume at two scale levels. The results obtained in this work, based on experimental data and developed numerical methods for determining the thermo-viscoelastic characteristics of composites, make it possible to estimate the contribution of stress relaxation in the mandrel and the shell to the evolution of the stress-strain state in the process of manufacturing the shell. Also, the developed technique makes it possible to predict the appearance of technological defects and determine the stages of heat treatment at which these defects occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.