In this paper, we study harmonic evolutes of [Formula: see text]-scrolls, that is, of ruled surfaces in Lorentz–Minkowski space having no Euclidean counterparts. Contrary to Euclidean space where harmonic evolutes of surfaces are surfaces again, harmonic evolutes of [Formula: see text]-scrolls turn out to be curves. In particular, we show that the harmonic evolute of a [Formula: see text]-scroll of constant mean curvature together with its base curve forms a null Bertrand pair. This allows us to characterize [Formula: see text]-scrolls of constant mean curvature and reconstruct them from a given null curve which is their harmonic evolute.
In this paper, we analyze involutes of pseudo-null curves in Lorentz–Minkowski 3-space. Pseudo-null curves are spacelike curves with null principal normals, and their involutes can be defined analogously as for the Euclidean curves, but they exhibit properties that cannot occur in Euclidean space. The first result of the paper is that the involutes of pseudo-null curves are null curves, more precisely, null straight lines. Furthermore, a method of reconstruction of a pseudo-null curve from a given null straight line as its involute is provided. Such a reconstruction process in Euclidean plane generates an evolute of a curve, however it cannot be applied to a straight line. In the case presented, the process is additionally affected by a choice of different null frames that every null curve allows (in this case, a null straight line). Nevertheless, we proved that for different null frames, the obtained pseudo-null curves are congruent. Examples that verify presented results are also given.
Null scrolls, i.e. ruled surfaces whose base curve and rulings are both lightlike (null), are Lorentzian surfaces having no Euclidean counterparts. In this work we present reparametrization of nondegenerate null scroll as a Bscroll, i.e. as a ruled surface whose rulings correspond to the binormal vectors of a base curve. We prove that the curvature of a base curve, which determines the Gaussian and mean curvature of a null scroll, is invariant under such a reparametrization. We also determine a one-parameter family of null curves on null scroll which serve as base curves for this kind of reparametrization.
In this paper we study isometries of ruled surfaces in the Lorentz-Minkowski space that preserve rulings. A special attention is given to the classes of surfaces having no Euclidean counterparts. We also construct some examples of isometric ruled surfaces with certain properties and rulings preserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.