Studied sludge samples are composed of major goethite and quartz; less clay minerals; and minor magnetite, hematite, clinochlore and todorokite. They have quite similar qualitative, but different semi-quantitative compositions. There are similar particle size distributions between the samples, and the highest contents of~50% belongs to the finest classes of <6 µm. Among size classes within the samples, almost identical iron contents are present; indicating their similar mineral compositions, which make these systems very complex for further separation processes. Sludge II has a higher natural settling rate, due to its higher density and mineral composition. With addition of the flocculant, settling rates increase significantly with the increase of the liquid component in both of the samples. The effect of flocculant on the settling rate is different between samples, and depends on their mineral composition. The time of settling does not play a role in selectivity, to the ratio of the mass of floating and sinking parts, and iron content does not change with time. The content of iron partially increases by flocculation; therefore, this method should be considered as an appropriate one. Zeta potential values for sludge are mostly between those for goethite and quartz, indicating their particle mixture and intricately association.
Background: Reuse of waste materials present in the technosphere, such as the metal mining tailings is becoming a more economical and energy-efficient method for obtaining the raw materials than the classical mining. Number of patents are presenting methods for tailings recycling, often in construction industry and metallurgy. At the same time, world market for metallic nanomaterials is rapidly increasing with numerous new applications and these two subjects should be connected. Methods: Paper presents the hypothesis that fine sludge from the metal mining tailings could be dominant source of the raw material for the nanotechnology. The idea is based on the fact that most of the usual publications present methodologies for synthesis of nanomaterials only from high-quality chemicals which is often expensive and unsustainable. Proposition here says, that it would be more economical to use the tailings as one of the technospheric wastes, directly by extracting the metal ions, selectively precipitating their cations and subsequently using them in nanotechnologies. Arguments are given by cross-comparison of the literature and patents on iron, bauxite, lead/zinc, copper, tailings and also the extraction of rare earth elements from tailing resources. Results: Metal mining tailings are shown to be an emerging subject in various research papers and patents together with other secondary raw materials. Conclusions: Use of the metal mining tailings as the resources in nanotechnology, is a large energy-saving potential. Taking advantage of this readily available technospheric waste which contains mostly micrometer particles, should contribute also to the zero-metal waste goals.
Dispersion and settling behavior of goethite has been studied and effect of pH values on surface properties of goethite particles with /without dispersants has been discussed. A prerequisite for the successful flocculation is the stabilization of the system which is achieved by the good dispersion of particles. The effect of pH, sodium silicate (Na2SiO3), sodium hexametaphosphate (Na6P6O18) and sodium pyrophosphate (Na4P2O7), on the surface charges of goethite was studied. The IEP of natural goethite was found by measuring zeta potential at pH value of 6.6. With the use of sodium silicate the IEP of goethite moves to pH 4.95. An IEP could not be detected when the poly-phosphates were used and the surface charge is negative from pH 2 to pH 12. The relatively high zeta potential values indicate a fairly stable dispersion, especially when the sodium hexametaphosphate were used as dispersant.
The waste sludge generated during processing of iron ore in the Omarska mine (The Republic of Srpska, Bosnia and Herzegovina) is fine-grained (15μm), containing relatively high concentrations of iron, and quartz as its major impurity. The flocculation behaviour of the primary natural raw “quartz” sample from Omarska mine was studied in the present paper. This sample is composed of major quartz which dominates over minor contents of clay minerals and feldspars, and contain 92.9% of SiO2. Particle size distribution analysis confirm that it is present as fine and ultra-fine particles. The zeta potential of quartz depends on pH value. Settling experiments were performed by using three different dispersants (Na-hexamethaphosphate, Na-pyrophosphate and Na-silicate), and anionic polyacrylamide as flocculants. The best results were achieved with Nahexametaphosphate (1000 g/t) and anionic polyacrylamide A 100. The effect of a flocculant on the settling rate depends on solid concentration. Settling rates increase significantly with the increase of the liquid component in both cases (natural settling and hindered settling by addition of a flocculant).
The paper represents a part of research conducted with the aim of examining the possibility of applying selective flocculation of goethite from sludge that occurs in the process of iron ore production. The aim of this study was to compare the influence of polyacrylamide and sodium oleate as a flocculant on the settling behavior of goethite under different conditions. The paper presents the results of the research on the influence of the flocculants based on polyacrylamide and sodium oleate, as well as pH values on the settling rate of a natural goethite sample. The results showed that the settling rate of goethite was influenced by pH value and the type of flocculant, while the concentration of flocculant did not significantly affect the settling rate. Measurements of zeta potential showed the effect of flocculants on the surface of the goethite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.