Exopolysaccharide production by LactobaciUlus casei CGll was studied in basal minimum medium containing various carbon sources (galactose, glucose, lactose, sucrose, maltose, melibiose) at concentrations of 2, 5, 10, and 20 g/liter. L. casei CGll produced exopolysaccharides in basal minimum medium containing each of the sugars tested; lactose and galactose were the poorest carbon sources, and glucose was by far the most efficient carbon source. Sugar concentrations had a marked eflect on polymer yield. Plasmid-cured Mucderivatives grew better in the presence of glucose and attained slightly higher populations than the wild-type strain. The values obtained with lactose were considerably lower for both growth and exopolysaccharide yield. The level of specific polymer production per cell obtained with glucose was distinctively lower for Mucderivatives than for the Muc+ strain. The polymer produced by L. casei CGll in the presence of glucose was different from that formed in the presence of lactose. The polysaccharide produced by L. casei CGII in basal minimum medium containing 20 g of glucose per liter had an intrinsic viscosity of 1.13 dl/g. It was rich in glucose (76%), which was present mostly as 2or 3-linked residues along with some 2,3 doubly substituted glucose units, and in rhamnose (21%), which was present as 2-linked or terminal rhamnose; traces of mannose and galactose were also present.
Traditional fermented foods are the best source for the isolation of strains with specific traits to act as functional starters and to keep the biodiversity of the culture collections. Besides, these strains could be used in the formulation of foods claimed to promote health benefits, i.e. those containing probiotic microorganisms. For the rational selection of strains acting as probiotics, several in vitro tests have been proposed. In the current study, we have characterized the probiotic potential of the strain Lactobacillus paraplantarum BGCG11, isolated from a Serbian soft, white, homemade cheese, which is able to produce a "ropy" exopolysaccharide (EPS). Three novobiocin derivative strains, which have lost the ropy phenotype, were characterized as well in order to determine the putative role of the EPS in the probiotic potential. Under chemically gastrointestinal conditions, all strains were able to survive around 1-2% (10(6)-10(7)cfu/ml cultivable bacteria) only when they were included in a food matrix (1% skimmed milk). The strains were more resistant to acid conditions than to bile salts and gastric or pancreatic enzymes, which could be due to a pre-adaptation of the parental strain to acidic conditions in the cheese habitat. The ropy EPS did not improve the survival of the producing strain. On the contrary, the presence of an EPS layer surrounding the strain BGCG11 hindered its adhesion to the three epithelial intestinal cell lines tested, since the adhesion of the three non-ropy derivatives was higher than the parental one and also than that of the reference strain Lactobacillus rhamnosus GG. Aiming to propose a potential target application of these strains as probiotics, the cytokine production of peripheral blood mononuclear cells (PBMC) was analyzed. The EPS-producing L. paraplantarum BGCG11 strain showed an anti-inflammatory or immunosuppressor profile whereas the non-ropy derivative strains induced higher pro-inflammatory response. In addition, when PBMC were stimulated with increasing concentrations of the purified ropy EPS (1, 10 and 100μg/ml) the cytokine profile was similar to that obtained with the EPS-producing lactobacilli, therefore pointing to a putative role of this biopolymer in its immune response.
A natural isolate of Lactococcus lactis was shown to produce two narrow spectrum class II bacteriocins, designated LsbA and LsbB. The cognate genes are located on a 5.6-kb plasmid within a gene cluster specifying LmrB, an ATP-binding cassette-type multidrug resistance transporter protein. LsbA is a hydrophobic peptide that is initially synthesized with an N-terminal extension. The housekeeping surface proteinase HtrA was shown to be responsible for the cleavage of precursor peptide to yield the active bacteriocin. LsbB is a relatively hydrophilic protein synthesized without an Nterminal leader sequence or signal peptide. The secretion of both polypeptides was shown to be mediated by LmrB. An L. lactis strain lacking plasmid-encoded LmrB and the chromosomally encoded LmrA is unable to secrete either of the two bacteriocins. Complementation of the strain with an active LmrB protein resulted in restored export of the two polypeptides across the cytoplasmic membrane. When expressed in an L. lactis strain that is sensitive to LsbA and LsbB, LmrB was shown to confer resistance toward both bacteriocins. It does so, most likely, by removing the two polypeptides from the cytoplasmic membrane. This is the first report in which a multidrug transporter protein is shown to be involved in both secretion and immunity of antimicrobial peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.