A natural isolate of Lactococcus lactis was shown to produce two narrow spectrum class II bacteriocins, designated LsbA and LsbB. The cognate genes are located on a 5.6-kb plasmid within a gene cluster specifying LmrB, an ATP-binding cassette-type multidrug resistance transporter protein. LsbA is a hydrophobic peptide that is initially synthesized with an N-terminal extension. The housekeeping surface proteinase HtrA was shown to be responsible for the cleavage of precursor peptide to yield the active bacteriocin. LsbB is a relatively hydrophilic protein synthesized without an Nterminal leader sequence or signal peptide. The secretion of both polypeptides was shown to be mediated by LmrB. An L. lactis strain lacking plasmid-encoded LmrB and the chromosomally encoded LmrA is unable to secrete either of the two bacteriocins. Complementation of the strain with an active LmrB protein resulted in restored export of the two polypeptides across the cytoplasmic membrane. When expressed in an L. lactis strain that is sensitive to LsbA and LsbB, LmrB was shown to confer resistance toward both bacteriocins. It does so, most likely, by removing the two polypeptides from the cytoplasmic membrane. This is the first report in which a multidrug transporter protein is shown to be involved in both secretion and immunity of antimicrobial peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.