Major improvements in crop yield are needed to keep pace with population growth and climate change. While plant breeding efforts have greatly benefited from advances in genomics, profiling the crop phenome (i.e., the structure and function of plants) associated with allelic variants and environments remains a major technical bottleneck. Here, we review the conceptual and technical challenges facing plant phenomics. We first discuss how, given plants' high levels of morphological plasticity, crop phenomics presents distinct challenges compared with studies in animals. Next, we present strategies for multi-scale phenomics, and describe how major improvements in imaging, sensor technologies and data analysis are now making high-throughput root, shoot, whole-plant and canopy phenomic studies possible. We then suggest that research in this area is entering a new stage of development, in which phenomic pipelines can help researchers transform large numbers of images and sensor data into knowledge, necessitating novel methods of data handling and modelling. Collectively, these innovations are helping accelerate the selection of the next generation of crops more sustainable and resilient to climate change, and whose benefits promise to scale from physiology to breeding and to deliver real world impact for ongoing global food security efforts.
Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding community from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and comparable to genomic selection. Despite the fact that the two methodological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.