We consider core-shell nanowires with conductive shell and insulating core, and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The lowenergy states are localized at the corners of the cross section, i. e. along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i. e. thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.
Gapped bilayer graphene can support the presence of intragap states due to kink gate potentials applied to the graphene layers. Electrons in these states display valley-momentum locking, which makes them attractive for topological valleytronics. Here, we show that kink-antikink local potentials enable modulated scattering of topological currents. We find that the kink-antikink coupling leads to anomalous steps in the junction conductance. Further, when the constriction detaches from the propagating modes, forming a loop, the conductance reveals the system energy spectrum. Remarkably, these kink-antikink devices can also work as valley filters with tiny magnetic fields by tuning a central gate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.