Computer programming is a key component of any physical science or engineering degree and is a skill sought by employers. Coding can be very appealing to these students as it is logical and another setting where they can solve problems. However, many students can often be reluctant to engage with the material as it might not interest them or they might not see how it applies to their wider study. Here, I present lessons I have learned and recommendations to increase participation in programming courses for students majoring in the physical sciences or engineering. The discussion and examples are taken from my second-year core undergraduate physics module, Introduction to Programming for Physicists, taught at The University of Manchester, UK. Teaching this course, I have developed successful solutions that can be applied to undergraduate STEM courses.
We present an ongoing project to assess the importance of D-waves and the ∆(1232) resonance for descriptions of neutral pion photoproduction in Heavy Baryon Chiral Perturbation Theory. This research has been motivated by data published by the A2 and CB-TAPS collaborations at MAMI [1]. This data has reached unprecedented levels of accuracy from threshold through to the ∆ resonance. Accompanying the experimental work, there has also been a series of publications studying the theory that show that, to go beyond an energy of E γ = 170 MeV, it is necessary to include other aspects, in particular the ∆(1232) as a degree of freedom [2] and possibly higher partial waves [3].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.