Recent advances in bioorthogonal catalysis are increasing the capacity of researchers to manipulate the fate of molecules in complex biological systems. A bioorthogonal uncaging strategy is presented, which is triggered by heterogeneous gold catalysis and facilitates the activation of a structurally diverse range of therapeutics in cancer cell culture. Furthermore, this solid‐supported catalytic system enabled locally controlled release of a fluorescent dye into the brain of a zebrafish for the first time, offering a novel way to modulate the activity of bioorthogonal reagents in the most fragile and complex organs.
Glioblastoma multiforme is the most common and deadliest form of brain cancer. Glioblastomas are infiltrated by a high number of microglia, which promote tumor growth and surrounding tissue invasion. However, it is unclear how microglia and glioma cells physically interact and if there are differences, depending on glioma cell type. Hence, we have developed a novel live imaging assay to study microglia–glioma interactions in vivo in the zebrafish brain. We transplanted well-established human glioblastoma cell lines, U87 and U251, into transgenic zebrafish lines with labelled macrophages/microglia. Our confocal live imaging results show distinct interactions between microglia and U87, as well as U251 glioblastoma cells that differ in number and nature. Importantly these interactions do not appear to be antitumoral as zebrafish microglia do not engulf and phagocytose the human glioblastoma cells. Finally, xenotransplants into the irf8−/− zebrafish mutant that lacks microglia, as well as pharmacological inhibition of the CSF-1 receptor (CSF-1R) on microglia, confirm a prominent role for zebrafish microglia in promoting human glioblastoma cell growth. This new model will be an important tool for drug screening and the development of future immunotherapeutics targeting microglia within glioma.
SN‐38, the active metabolite of irinotecan, is released upon liver hydrolysis to mediate potent antitumor activity. Systemic exposure to SN‐38, however, also leads to serious side effects. To reduce systemic toxicity by controlling where and when SN‐38 is generated, a new prodrug was specifically designed to be metabolically stable and undergo rapid palladium‐mediated activation. Blocking the phenolic OH of SN‐38 with a 2,6‐bis(propargyloxy)benzyl group led to significant reduction of cytotoxic activity (up to 44‐fold). Anticancer properties were swiftly restored in the presence of heterogeneous palladium (Pd) catalysts to kill colorectal cancer and glioma cells, proving the efficacy of this novel masking strategy for aromatic hydroxyls. Combination with a Pd‐activated 5FU prodrug augmented the antiproliferative potency of the treatment, while displaying no activity in the absence of the Pd source, which illustrates the benefit of achieving controlled release of multiple approved therapeutics—sequentially or simultaneously—by the same bioorthogonal catalyst to increase anticancer activity.
Recent advances in bioorthogonal catalysis are increasing the capacity of researchers to manipulate the fate of molecules in complex biological systems.Abioorthogonal uncaging strategy is presented, which is triggered by heterogeneous gold catalysis and facilitates the activation of astructurally diverse range of therapeutics in cancer cell culture. Furthermore,t his solid-supported catalytic system enabled locally controlled release of afluorescent dye into the brain of azebrafish for the first time,offering anovel waytomodulate the activity of bioorthogonal reagents in the most fragile and complex organs.Seminal works showcased the capabilities of foreign transition metal catalysts in mediated chemoselective transformations within cells.[1] More recently,t he emerging field of bioorthogonal catalysis [2] has produced aw ealth of creativity in av ariety of applications,r anging from biomolecule labeling, [3a-c] metabolite detection [3d] and intra/subcellular probe release, [3e-h] to in situ enzyme [3i,j] and prodrug activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.