a b s t r a c tIn the large field of nanotechnology, polymer matrix based nanocomposites have become a prominent area of current research and development. Exfoliated clay-based nanocomposites have dominated the polymer literature but there are a large number of other significant areas of current and emerging interest. This review will detail the technology involved with exfoliated clay-based nanocomposites and also include other important areas including barrier properties, flammability resistance, biomedical applications, electrical/electronic/optoelectronic applications and fuel cell interests. The important question of the ''nano-effect'' of nanoparticle or fiber inclusion relative to their larger scale counterparts is addressed relative to crystallization and glass transition behavior. Of course, other polymer (and composite)-based properties derive benefits from nanoscale filler or fiber addition and these are addressed.
Increasing demands for energy-efficient separations in applications ranging from water purification to petroleum refining, chemicals production, and carbon capture have stimulated a vigorous search for novel, high-performance separation membranes. Synthetic membranes suffer a ubiquitous, pernicious trade-off: highly permeable membranes lack selectivity and vice versa. However, materials with both high permeability and high selectivity are beginning to emerge. For example, design features from biological membranes have been applied to break the permeability-selectivity trade-off. We review the basis for the permeability-selectivity trade-off, state-of-the-art approaches to membrane materials design to overcome the trade-off, and factors other than permeability and selectivity that govern membrane performance and, in turn, influence membrane design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.