The role and control of the four rapamycin-sensitive phosphorylation sites that govern the association of PHAS-I with the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), were investigated by using newly developed phospho-specific antibodies. Thr(P)-36/45 antibodies reacted with all three forms of PHAS-I that were resolved when cell extracts were subjected to SDS-polyacrylamide gel electrophoresis. Thr (
Neurons are large and long lived, creating high needs for regulating protein turnover. Disturbances in proteostasis lead to aggregates and cellular stress. We characterized the behavior of the short-lived dendritic membrane proteins Nsg1 and Nsg2 to determine whether these proteins are degraded locally in dendrites or centrally in the soma. We discovered a spatial heterogeneity of endolysosomal compartments in dendrites. Early EEA1-positive and late Rab7-positive endosomes are found throughout dendrites, whereas the density of degradative LAMP1- and cathepsin (Cat) B/D-positive lysosomes decreases steeply past the proximal segment. Unlike in fibroblasts, we found that the majority of dendritic Rab7 late endosomes (LEs) do not contain LAMP1 and that a large proportion of LAMP1 compartments do not contain CatB/D. Second, Rab7 activity is required to mobilize distal predegradative LEs for transport to the soma and terminal degradation. We conclude that the majority of dendritic LAMP1 endosomes are not degradative lysosomes and that terminal degradation of dendritic cargos such as Nsg1, Nsg2, and DNER requires Rab7-dependent transport in LEs to somatic lysosomes.
The mammalian target of rapamycin (mTOR) is a Ser/Thr (S/T) protein kinase, which controls mRNA translation initiation by modulating phosphorylation of the translational regulators PHAS-I and p70 S6K . Here we show that in vitro mTOR is able to phosphorylate these two regulators at comparable rates. Both (S/T)P sites, such as Thr36, Thr45, and Thr69 in PHAS-I and the h(S/T)h site (where h is a hydrophobic amino acid) Thr389 in p70 S6K , were phosphorylated. Rapamycin-FKBP12 inhibited mTOR activity. Surprisingly, the extent of inhibition depended on the substrate. Moreover, mutating Ser2035 in the rapamycin-binding domain (FRB) not only decreased rapamycin sensitivity as expected but also dramatically affected the sites phosphorylated by mTOR. The results demonstrate that mutations in Ser2035 are not silent with respect to mTOR activity and implicate the FRB in substrate recognition. The findings also impose new limitations on interpreting results from experiments in which rapamycin and/or rapamycin-resistant forms of mTOR are used to investigate mTOR function in cells.
A major obstacle to pre-symptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle re-entry (CCR) mediated by amyloid-β oligomers (AβOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AβO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AβOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AβOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.