Numerous studies have linked biodiversity with zoonotic disease control. However, researchers have warned against simply believing that the increase in biodiversity can reduce the infection disease in the community. They proposed that amplification effect (increase in biodiversity accompanied by an increase in disease prevalence) might sometimes occur. Thus, we formulated a deterministic model to consider the impact of an amplification or dilution agent on the SNV transmission in the deer mouse population. Bifurcation analysis was carried out to examine the combined influences of the environmental carrying capacity, the interspecific competition strength and the impact of amplification or dilution agent on the deer mouse population. Our results showed that the system with amplification agent required a higher carrying capacity or stronger interspecific strength to compensate for its amplification effect in suppressing the SNV prevalence; this situation explains the lack of reduction in SNV prevalence despite the presence of high biodiversity in some empirical studies. In this study, we highlight the importance of investigating the roles of the additional species in an assemblage to better understand their relationship with the SNV prevalence in deer mouse population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.