Abstract-We propose a simple and robust method to determine the calibration function of phase-only spatial light modulators (SLMs). The proposed method is based on the codification of binary phase Fresnel lenses (BPFLs) onto an SLM. At the principal focal plane of a BPFL, the focal irradiance is collected with a single device just able to measure intensitydependent signals, e.g., CCD camera, photodiodes, power meter, etc. In accordance with the theoretical model, it is easy to extract the desired calibration function from the numerical processing of the experimental data. The lack of an interferometric optical arrangement, and the use of minimal optical components allow a fast alignment of the setup, which is in fact poorly dependent on environmental fluctuations. In addition, the effects of the zeroorder, commonly presented in the diffraction-based methods, are drastically reduced because measurements are carried out only in the vicinity of the focal points, where main light contributions are coming from diffracted light at the BPFL. Furthermore, owing to the simplicity of the method, full calibration can be done, in most practical situations, without moving the SLM from the original place for a given application.
Diffractive optical elements (DOEs) have shown their applicability to control the spatio-temporal characteristics of ultra-short laser pulses. DOEs can provide high efficiency, compactness, very low material dispersion and, when implemented with spatial light modulators, real-time pulse engineering. In this communication, we report management of temporal and spectral profiles of ultra-short pulses by means of a quasi-direct space-to-time (QDST) pulse shaper. Moreover, we present spatio-temporal control, including dispersion compensation, by DOEs, and applications for activating nonlinear processes. On the other hand, we have achieved complete spatial control of ultra-short pulses, overcoming spatial chirp effects. The methods and experiments presented in this communication illustrate the capabilities of DOEs to control ultra-short laser pulses and their suitability for a variety of applications.
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.