The use of dynamic mesh optimization (DMO) for multiphase flow in porous have been proposed recently showing a very good potential to reduce the computational cost by placing the resolution where and when necessary. Nonetheless, further work needs to be done to prove its usability in very large domains where parallel computing with distributed memory, i.e. using MPI libraries, may be necessary. Here, we describe the methodology used to parallelize a multiphase porous media flow simulator in combination with DMO as well as study of its performance. Due to the peculiarities and complexities of the typical porous media simulations due to its high aspect ratios, we have included a fail-safe for parallel simulations with DMO that enhance the robustness and stability of the methods used to parallelize DMO in other fields (Navier- Stokes flows). The results show that DMO for parallel computing in multiphase porous media flows can perform very well, showing good scaling behaviour.
Summary
Multiphase inertia‐dominated flow simulations, and free surface flow models in particular, continue to this day to present many challenges in terms of accuracy and computational cost to industry and research communities. Numerical wave tanks and their use for studying wave‐structure interactions are a good example. Finite element method (FEM) with anisotropic meshes combined with dynamic mesh algorithms has already shown the potential to significantly reduce the number of elements and simulation time with no accuracy loss. However, mesh anisotropy can lead to mesh quality‐related instabilities. This article presents a very robust FEM approach based on a control volume discretization of the pressure field for inertia dominated flows, which can overcome the typically encountered mesh quality limitations associated with extremely anisotropic elements. Highly compressive methods for the water‐air interface are used here. The combination of these methods is validated with multiphase free surface flow benchmark cases, showing very good agreement with experiments even for extremely anisotropic meshes, reducing by up to two orders of magnitude the required number of elements to obtain accurate solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.