IntroductionStaphylococci are the most commonly identified pathogens in bloodstream infections. Identification of Staphylococcus aureus in blood culture (SAB) requires a prompt and adequate clinical management. The detection of coagulase-negative staphylococci (CoNS), however, corresponds to contamination in about 75% of the cases. Nevertheless, antibiotic therapy is often initiated, which contributes to the risk of drug-related side effects. We developed a computerised clinical decision support system (HELP-CDSS) that assists physicians with an appropriate management of patients with Staphylococcus bacteraemia. The CDSS is evaluated using data of the Data Integration Centers (DIC) established at each clinic. DICs transform heterogeneous primary clinical data into an interoperable format, and the HELP-CDSS displays information according to current best evidence in bacteraemia treatment. The overall aim of the HELP-CDSS is a safe but more efficient allocation of infectious diseases specialists and an improved adherence to established guidelines in the treatment of SAB.Methods and analysisThe study is conducted at five German university hospitals and is designed as a stepped-wedge cluster randomised trial. Over the duration of 18 months, 135 wards will change from a control period to the intervention period in a randomised stepwise sequence. The coprimary outcomes are hospital mortality for all patients to establish safety, the 90-day disease reoccurrence-free survival for patients with SAB and the cumulative vancomycin use for patients with CoNS bacteraemia. We will use a closed, hierarchical testing procedure and generalised linear mixed modelling to test for non-inferiority of the CDSS regarding hospital mortality and 90-day disease reoccurrence-free survival and for superiority of the HELP-CDSS regarding cumulative vancomycin use.Ethics and disseminationThe study is approved by the ethics committee of Jena University Hospital and will start at each centre after local approval. Results will be published in a peer-reviewed journal and presented at scientific conferences.Trial registration numberDRKS00014320.
Abstract. "Do machines perform better than humans in visual recognition tasks?" Not so long ago, this question would have been considered even somewhat provoking and the answer would have been clear: "No". In this paper, we present a comparison of human and machine performance with respect to annotation for multimedia retrieval tasks. Going beyond recent crowdsourcing studies in this respect, we also report results of two extensive user studies. In total, 23 participants were asked to annotate more than 1000 images of a benchmark dataset, which is the most comprehensive study in the field so far. Krippendorff's α is used to measure inter-coder agreement among several coders and the results are compared with the best machine results. The study is preceded by a summary of studies which compared human and machine performance in different visual and auditory recognition tasks. We discuss the results and derive a methodology in order to compare machine performance in multimedia annotation tasks at human level. This allows us to formally answer the question whether a recognition problem can be considered as solved. Finally, we are going to answer the initial question.
Catalogues of learning objectives for Biomedical and Health Informatics are relevant prerequisites for systematic and effective qualification. Catalogue management needs to integrate different catalogues and support collaborative revisioning. The Health Informatics Learning Objectives Navigator (HI-LONa) offers an open, interoperable platform based on Semantic Web Technology. At present HI-LONa contains 983 learning objectives of three relevant catalogues. HI-LONa successfully supported a multiprofessional consensus process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.