In this study, we look at how to estimate stress–strength reliability models, R1 = P (Y < X) and R2= P (Y < X), where the strength X and stress Y have the same distribution in the first model, 𝑅1, and strength X and stress Z have different distributions in the second model, R2. Based on the first model, the stress Y and strength X are assumed to have the Lomax distributions, whereas, in the second model, X and Z are assumed to have both the Lomax and inverse Lomax distributions, respectively. With the assumption that the variables in both models are independent, the median-ranked set sampling (MRSS) strategy is used to look at different possibilities. Using the maximum likelihood technique and an MRSS design, we derive the reliability estimators for both models when the strength and stress variables have a similar or dissimilar set size. The simulation study is used to verify the accuracy of various estimates. In most cases, the simulation results show that the reliability estimates for the second model are more efficient than those for the first model in the case of dissimilar set sizes. However, with identical set sizes, the reliability estimates for the first model are more efficient than the equivalent estimates for the second model. Medical data are used for further illustration, allowing the theoretical conclusions to be verified.
A new continuous distribution is proposed in this paper. This distribution is a generalization of Mukherjee-Islam distribution using the quadratic rank transmutation map. It is called transmuted Mukherjee-Islam distribution (TMID). We have studied many properties of the new distribution: Reliability and hazard rate functions. The descriptive statistics: mean, variance, skewness, kurtosis are also studied. Maximum likelihood method is used to estimate the distribution parameters. Order statistics and Renyi and Tsallis entropies were also calculated. Furthermore, the quantile function and the median are calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.