In this study, eugenol loaded m-PEG/PCL nanoparticles were used to make better the anti-bacterial properties of eugenol in an attempt to eliminate the resistant bacteria. m-PEG/PCL copolymer was prepared by ring-opening polymerization of ε-caprolactone monomer in the vicinity of dry m-PEG and tin (II) octoate catalyst. Polymeric nanoparticles were prepared by nanoprecipitation procedure. The particle size and zeta potential of mPEG/PCL/eugenol were specified to be 157.23 ± 3.81 nm and − 6.95 ± 0.19 mv, respectively. The polymeric nanoparticle structure was identified by AFM, FT-IR, and DSC techniques. To evaluate and compare the anti-bacterial efficiency of m-PEG/PCL/eugenol and free eugenol, a turbidity assay was used in association with gram-positive and gram-negative bacteria. Images of SEM were taken from bacteria before and after exposure to the mPEG/PCL/eugenol. Colony-forming unit per milliliter (CFU/ml) method was considered to follow the effect of mPEG/PCL/eugenol on bacteria growth rate in the original hospital wastewater. The results showed that m-PEG/PCL/eugenol nanoparticles at 40 µM concentration show the enormous antibacterial effect at 37°C. In original hospital wastewater, m-PEG/PCL/eugenol in the concentration of 0.125 µM at 25 ° C showed the greatest growth decrease of microbial total count.
This study aims to identify and prioritize indicators of green Management in the Energy and Waste fields in Erfan hospital of Tehran , Iran. By examining the relativle books and by using Delphi technique and AHP (Analytic Hierarchy Process) model , as well as green management guide. After expert consensus on the suitability for adopted decision making criteria, defined criteria for prioritization of green management indicators were introduced in three major sectors (productivity, energy, waste control and disposal). The prioritization of desired criteria was done using AHP model and EC (Expert Choice) application. The most important among green management criteria for productivity , energy as well as waste control and disposal were optimal use of resources , energy conservation and waste separation , respectively. Indicators of resource efficiency, sustainable development and energy conservation are factors in the emergence of management as a priority to third.
BackgroundIn this study removal efficiency of 4-chloro-2-methyl-phenoxy acetic acid (MCPA) by 3D polymer nano-magnetic (PV/S-g-3D-GO/N) was investigated.MethodsThe effects of operation parameters including adsorbent mass, influent flow rate and inlet concentration on the adsorption performance are investigated.ResultsMaximum adsorption capacity (4.36 mg/g) was achieved at optimum conditions (pH: 3, contact time: 300 min, adsorbent dosage: 5 g/l and temperature: 50 °C). Moreover, adsorption isotherm and kinetics were agreed with the Langmuir model (R2 = 0.997) and pseudo-second-order model (R2 = 0.999), respectively. Thermodynamic studies also show that adsorption process was spontaneous (ΔG < 0) and endothermic (ΔH > 0).ConclusionAccording to removal efficiency (100%), this adsorbent is an excellent alternative for removal herbicide in high temperature industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.