Classification of built-up land and bare land on remote sensing images is a very difficult problem due to the complexity of the urban land cover. Several urban indices have been proposed to improve the accuracy in classifying urban land use/land cover from optical satellite imagery. This paper presents an development of the EBBI (Enhanced Built-up and Bareness Index) index based on the combination of Landsat 8 and Sentinel 2 multi-resolution satellite imagery. Near infrared band (band 8a), short wave infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) Landsat 8 image were used to calculate EBBI index. The results obtained show that the combination of Landsat 8 and Sentinel 2 satellite images improves the spatial resolution of EBBI index image, thereby improving the accuracy of classification of bare land and built-up land by about 5% compared with the case using only Landsat 8 images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.