We consider time reversal transformations to obtain twofold orthogonal splittings of any tensor on a Lorentzian space of arbitrary dimension n. Applied to the Weyl tensor of a spacetime, this leads to a definition of its electric and magnetic parts relative to an observer (defined by a unit timelike vector field u), in any dimension. We study the cases where one of these parts vanishes in detail, i.e., purely electric (PE) or magnetic (PM) spacetimes. We generalize several results from four to higher dimensions and discuss new features of higher dimensions. For instance, we prove that the only permitted Weyl types are G, I i and D, and discuss the possible relation of u with the Weyl aligned null directions (WANDs); we provide invariant conditions that characterize PE/PM spacetimes, such as Bel-Debever-like criteria, or constraints on scalar invariants, and connect the PE/PM parts to the kinematic quantities of u; we present conditions under which direct product spacetimes (and certain warps) are PE/PM, which enables us to construct explicit examples. In particular, it is also shown that all static spacetimes are necessarily PE, while stationary spacetimes (such as spinning black holes) are in general neither PE nor PM. Whereas ample classes of PE spacetimes exist, PM solutions are elusive; specifically, we prove that PM Einstein spacetimes of type D do not exist, in any dimension. Finally, we derive corresponding results for the electric/magnetic parts of the Riemann tensor, which is useful when considering spacetimes with matter fields, and moreover leads to first examples of PM spacetimes in higher dimensions. We also note in passing that PE/PM Weyl (or Riemann) tensors provide examples of minimal tensors, and we make the connection hereof with the recently proved alignment theorem (Hervik 2011 Class. Quantum Grav. 28 215009). This in turn sheds new light on the classification of the Weyl tensors based on null alignment, providing a further invariant characterization
We refine the null alignment classification of the Weyl tensor of a fivedimensional spacetime. The paper focusses on the algebraically special alignment types N, III, II and D, while types I and G are briefly discussed. A first refinement is provided by the notion of spin type of the components of highest boost weight. Second, we analyze the Segre types of the Weyl operator acting on bivector space and examine the intersection with the spin type classification. We present a full treatment for types N and III, and illustrate the classification from different viewpoints (Segre type, rank, spin type) for types II and D, paying particular attention to possible nilpotence, which is a new feature of higher dimensions. We also point out other essential differences with the four-dimensional case. In passing, we exemplify the refined classification by mentioning the special subtypes associated to certain important spacetimes, such as Myers-Perry black holes, black strings, RobinsonTrautman spacetimes and purely electric/magnetic type D spacetimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.