Non-insulin-dependent (type II) diabetes mellitus (NIDDM) is characterized by hyperglycaemia and insulin resistance, and affects nearly 5% of the general population. Inherited factors are important for its development, but the genes involved are unknown. We have identified a large pedigree in which NIDDM, in combination with a sensorineural hearing loss, is maternally inherited. The maternal inheritance and the observed decrease in mitochondrial enzyme activities of the respiratory chain indicate a genetic defect in the mitochondrial DNA. An A to G transition was identified at nucleotide 3,243, a conserved position in the mitochondrial gene for tRNA(Leu)(UUR). This mutation cosegregates with the disease in this family and is absent in controls, and indicates that a point mutation in mitochondrial DNA is a pathogenetic factor for NIDDM.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder which maps to chromosome 4qter, distal to the D4S139 locus. The cosmid clone 13E, isolated in a search for homeobox genes, was subsequently mapped to 4q35, also distal to D4S139. A subclone, p13E-11, detects in normal individuals a polymorphic EcoRI fragment usually larger than 28 kilobases (kb). Surprisingly, using the same probe we detected de novo DNA rearrangements, characterized by shorter EcoRI fragments (14-28 kb), in 5 out of 6 new FSHD cases. In 10 Dutch families analysed, a specific shorter fragment between 14-28 kb cosegregates with FSHD. Both observations indicate that FSHD is caused by independent de novo DNA rearrangements in the EcoRI fragment detected by p13E-11.
The autosomal dominant myopathy facioscapulohumeral muscular dystrophy (FSHD1, OMIM 158900) is caused by contraction of the D4Z4 repeat array on 4qter. We show that this contraction causes marked hypomethylation of the contracted D4Z4 allele in individuals with FSHD1. Individuals with phenotypic FSHD1, who are clinically identical to FSHD1 but have an unaltered D4Z4, also have hypomethylation of D4Z4. These results strongly suggest that hypomethylation of D4Z4 is a key event in the cascade of epigenetic events causing FSHD1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.