We identify the Givental formula for the ancestor formal Gromov-Witten potential with a version of the topological recursion procedure for a collection of isolated local germs of the spectral curve. As an application we prove a conjecture of Norbury and Scott on the reconstruction of the stationary sector of the Gromov-Witten potential of CP 1 via a particular spectral curve.
DR-cycles are certain cycles on the moduli space of curves. Intuitively, they parametrize curves that allow a map to P 1 with some specified ramification profile over two points. They are known to be tautological classes, but in general there is no known expression in terms of standard tautological classes. In this paper, we compute the intersection numbers of those DR-cycles with any monomials in ψ-classes when this intersection is zero-dimensional.
Abstract. We derive the spectral curves for q-part double Hurwitz numbers, r-spin simple Hurwitz numbers, and arbitrary combinations of these cases, from the analysis of the unstable (0, 1)-geometry. We quantize this family of spectral curves and obtain the Schrödinger equations for the partition function of the corresponding Hurwitz problems. We thus confirm the conjecture for the existence of quantum curves in these generalized Hurwitz number cases.
In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues -completed (r + 1)-cycles. In particular, we give a geometric interpretation of these generalised Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural "intersection numbers" is discussed in detail.
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.2010 Mathematics Subject Classification. 53D45, 37K10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.