To remain independent and healthy, an important factor to consider is the maintenance of skeletal muscle mass. Inactivity leads to measurable changes in muscle and bone, reduces exercise capacity, impairs the immune system, and decreases the sensitivity to insulin. Therefore, maintaining physical activity is of great importance for skeletal muscle health. One form of structured physical activity is resistance training. Generally speaking, one needs to lift weights at approximately 70% of their one repetition maximum (1RM) to have noticeable increases in muscle size and strength. Although numerous positive effects are observed from heavy resistance training, some at risk populations (e.g. elderly, rehabilitating patients, etc.) might be advised not to perform high-load resistance training and may be limited to performance of low-load resistance exercise. A technique which applies pressure cuffs to the limbs causing blood flow restriction (BFR) has been shown to attenuate atrophy and when combined with low intensity exercise has resulted in an increase in both muscle size and strength across different age groups. We have provided an evidence based model of progression from bed rest to higher load resistance training, based largely on BFR literature concentrating on more at risk populations, to highlight a possible path to recovery.
Low-intensity resistance exercise with blood flow restriction (BFR) has been shown to induce a prominent increase in muscle activation in response to muscle fatigue. However, the magnitude of muscle fatigue between continuous (Con-BFR) and intermittent BFR (Int-BFR, BFR only during exercise) is currently unknown. We examined the effect of Con-BFR or Int-BFR on muscle activation during exercise. Unilateral arm curl exercise (20% of one-repetition maximum, four sets, 30 sec rest period between sets) was performed without (CON) or with Con-BFR or Int-BFR. During BFR conditions, the cuff was inflated to 160 mmHg on the proximal region of testing arm. Surface electromyography (EMG) was recorded from the biceps brachii muscle, and integrated EMG (iEMG) was analyzed. During the exercise, iEMG increased progressively in Con-BFR and Int-BFR and both conditions were greater (p < 0.05) than CON at the 3rd and 4th set. However, there were no differences (p > 0.05) in iEMG between Con-BFR and Int-BFR during exercise (∼2.45 and ∼2.40 times, respectively). Thus, the magnitude of increase in muscle activation may be similar between Con-BFR and Int-BFR when BFR exercise was performed at a high level of cuff pressure intensity.
The application of blood flow restriction during low-load resistance exercise has been shown to induce muscle growth with high or low restriction pressures, however, loads lower than 20% one-repetition maximum (1RM) remain unexplored. Fourteen trained individuals completed six elbow flexion protocols involving three different loads (10%, 15%, and 20% 1RM) each of which was performed with either a low (40% arterial occlusion) or high (80% arterial occlusion) pressure. Pre- and post-measurements of surface electromyography (sEMG), isometric torque, and muscle thickness were analyzed. An interaction was present for torque (p < 0.001) and muscle thickness (p < 0.001) illustrating that all increases in pressure and/or load resulted in a greater fatigue and muscle thickness. There was no interaction for sEMG (p = 0.832); however, there were main effects of condition (p = 0.002) and time (p = 0.019) illustrating greater sEMG in the 20% 1RM conditions. Higher blood flow restriction pressures may be more beneficial for muscle growth when very low loads are used.
The aim was to compare the acute effects of work matched high intensity (75% peak aerobic capacity) aerobic exercise to low intensity (40% peak aerobic capacity) aerobic exercise with different degrees of blood flow restriction (BFR) [40% estimated arterial occlusion (40 BFR) and 60% estimated arterial occlusion (60 BFR)] on variables previously hypothesized to be important for muscle adaptation. There were no meaningful changes in torque. Anterior thigh muscle thickness was increased from baseline with high intensity cycling and 40 BFR (~2 mm increase, p ≤ 0.008). A significant increase in lactate occurred in all exercise conditions but was greatest with high intensity cycling (~5.4 mmol/L increase). Muscle activation was significantly higher with high intensity cycling compared to low intensity cycling with BFR, regardless of pressure (~25% vs. ~12% MVC). Mean power frequency was not different between conditions but did increase from the first 5 minutes of exercise to the last 5 minutes (93% vs. 101%, p < 0.001). Ratings of perceived exertion (RPE) were higher with high intensity cycling but discomfort was similar between conditions. We wish to suggest that high intensity cycling produces greater muscular stress than that observed with work matched low intensity cycling in combination with BFR.
The purpose of this study was to compare the acute muscular response with resistance exercise between the following conditions [labeled (% one-repetition maximum/% arterial occlusion pressure)]: high-load (70/0), very low-load (15/0), very low-load with moderate (15/40), and high (15/80) blood flow restriction pressures. Twenty-three participants completed four sets of unilateral knee extension to failure (up to 90 repetitions) with each condition, one condition per leg, each day. Muscle thickness and maximal voluntary contraction (MVC) were measured before (Pre), immediately after (Post-0), and 15 min after (Post-15) exercise and electromyography (EMG) amplitude during exercise. Pre to Post-0 muscle thickness changes in cm [95% CI] were greater with 15/40 [0.57 (0.41, 0.73)] and 15/80 [0.49 (0.35, 0.62)] compared to 70/0 [0.33 (0.25, 0.40)]. Pre to Post-0 MVC changes in Nm [95% CI] were higher with 15/40 [−127.0 (−162.1, −91.9)] and 15/80 [−133.6 (−162.8, −104.4)] compared to 70/0 [−48.4 (−70.1, −26.6)] and 15/0 [−98.4 (−121.9, −74.9)], which were also different. Over the first three repetitions, EMG increased across sets, whereas in the last three repetitions it did not. EMG was also different between conditions and was generally greater during 70/0. Repetitions decreased across sets reaching the lowest for 70/0, and for very low loads decreased with increased pressure. In trained participants exercising to failure, lower load and the application of restriction pressure augment changes in muscle thickness and torque. The EMG amplitude was augmented by load. Training studies should compare these conditions, as the results herein suggest some muscular adaptations may differ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.