We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic cerebrospinal fluid (CSF) profiles from 12 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose, and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-
Traditionally, clinicians consider lactate as a waste product of anaerobic glycolysis. Interestingly, research has shown that lactate may serve as an alternative fuel for the brain to protect it against harm. The increasing scientific awareness of the potential beneficial side of lactate, however, is entering the clinic rather slowly. Following this, and realizing that the application of potential novel therapeutic strategies in pediatric populations often lags behind the development in adults, this review summarizes the key data on therapeutic use of intravenous infusion of sodium lactate in humans. PubMed and clinicaltrial.gov were searched up until November 2021 focusing on interventional studies in humans. Thirty-four articles were included in this review, with protocols of lactate infusion in adults with diabetes mellitus, traumatic brain injury, Alzheimer’s disease, and cardiac disease. One study on lactate infusion in children was also included. Results of our literature search show that sodium lactate can be safely administrated, without major side effects. Additionally, the present literature clearly shows the potential benefits of therapeutic lactate infusion under certain pathological circumstances, including rather common clinical conditions like traumatic brain injury.Conclusion: This review shows that lactate is a save, alternative energy source for the adult brain warranting studies on the potential therapeutic effects of sodium lactate infusion in children.
What is Known:• Lactate is generally considered a waste product of anaerobic glycolysis. However, lactate also is an alternative fuel for different organs, including the brain.• Lactate infusion is not incorporated in standard care for any patient population.
What is New:• Thirty-four studies investigated the therapeutic use of intravenous sodium lactate in different patient populations, all with different study protocols.• Literature shows that lactate infusion may have beneficial effects in case of hypoglycemia, traumatic brain injury, and cardiac failure without the risk of major side effects.
We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic CSF profiles from 11 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose may originate from O-glycosylated proteins; their decreased levels are hypothetically the consequence of insufficient glucose, one of two substrates for O-glucosylation. Since many proteins are O-glucosylated, this deficiency may affect cellular processes and thus contribute to GLUT1DS pathophysiology. The novel CSF biomarkers have the potential to improve the biochemical diagnosis of GLUT1DS. Our findings imply that brain glucose deficiency in GLUT1DS may cause disruptions at the cellular level that go beyond energy metabolism, underlining the importance of developing treatment strategies that directly target cerebral glucose uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.