A major unresolved issue in solar physics is the nature of the reconnection events that may give rise to the extreme temperatures measured in the solar corona. In the nanoflare heating paradigm of coronal heating, localized reconnection converts magnetic energy into thermal energy, producing multithermal plasma in the corona. The properties of the corona produced by magnetic reconnection, however, depend on the details of the reconnection process. A significant challenge in understanding the details of reconnection in magnetohydrodynamic (MHD) models is that these models are frequently only able to tell us that reconnection has occurred, but there is significant difficulty in identifying precisely where and when it occurred. In order to properly understand the consequences of reconnection in MHD models, it is crucial to identify reconnecting field lines and where along the field lines reconnection occurs. In this work, we analyze a fully 3D MHD simulation of a realistic sunspot topology, driven by photospheric motions, and we present a model for identifying reconnecting field lines. We also present a proof-of-concept model for identifying the location of reconnection along the reconnecting field lines, and use that to measure the angle at which reconnection occurs in the simulation. We find evidence that magnetic reconnection occurs preferentially near field line footpoints, and discuss the implications of this for coronal heating models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.