Abstract-Teleoperation is the dominant form of dexterous robotic tasks in the field. However, there are many use cases in which direct teleoperation is not feasible such as disaster areas with poor communication as posed in the DARPA Robotics Challenge, or robot operations on spacecraft a large distance from Earth with long communication delays. Presented is a solution that combines the Affordance Template Framework for object interaction with TaskForce for supervisory control in order to accomplish high level task objectives with basic autonomous behavior from the robot. TaskForce, is a new commanding infrastructure that allows for optimal development of task execution, clear feedback to the user to aid in off-nominal situations, and the capability to add autonomous verification and corrective actions. This framework has allowed the robot to take corrective actions before requesting assistance from the user. This framework is demonstrated with Robonaut 2 removing a Cargo Transfer Bag from a simulated logistics resupply vehicle for spaceflight using a single operator command. This was executed with 80% success with no human involvement, and 95% success with limited human interaction. This technology sets the stage to do any number of high level tasks using a similar framework, allowing the robot to accomplish tasks with minimal to no human interaction.
Currently, harmonic drives are the primary speed reducer for robotic applications where a high reduction in a small package is required. Cycloidal drives are an alternative option for high reduction, small package, use-cases with the advantage of a higher specific torque and the ability to customize and integrate the drive for the application. These compact style cycloidal drives have been well studied in theory and simulation for their performance, but very little data is available on their actual performance over time. This paper presents experimental data on performance of a cycloidal drive designed for a Lunar or Martian rover application. Burn-in time efficiency curves and torque/speed efficiency profiles are computed after running the drive through 129k output cycles (7.6M input cycles) over the course of 300+ hours of testing. The study finds that substantial burn-in time may be required for steady-state performance, but peak efficiencies of 81% can be achieved. Also, the efficiency is shown to be dependent on the torque through the actuator. This work demonstrates a customized cycloidal drive in a space application that is comparable to a harmonic drive in efficiency performance, with a 2x increase in specific torque, suggesting the application of cycloidal drives could grow tremendously in robotic designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.