Insects can serve as a novel high-quality protein source for pet foods. However, there is an absence of research investigating the use of insects in pet food. The study objective was to evaluate the apparent total tract digestibility and possible health effects of diets containing graded levels of cricket (Gryllodes sigillatus) meal fed to healthy adult dogs. Thirty-two adult Beagles were randomly assigned to one of four dietary treatments: 0%, 8%, 16%, or 24% cricket meal. Dogs were fed their respective diet for a total of 29 d with a 6-d collection phase. Fecal samples were collected daily during the collection phase to measure total fecal output as well as apparent total tract digestibility for dry matter (DM), organic matter, crude protein, fat, total dietary fiber, and gross energy. Blood samples were taken prior to the study and on day 29 for hematology and chemistry profiles. Data were analyzed in a mixed model including the fixed effects of diet and sex. Total fecal output increased on both an as-is (P = 0.030) and DM basis (P = 0.024). The apparent total tract digestibility of each nutrient decreased (P < 0.001) with the increasing level of cricket meal inclusion. All blood values remained within desired reference intervals indicating healthy dogs. Slight fluctuations in blood urea nitrogen (P = 0.037) and hemoglobin (P = 0.044) levels were observed but were not considered of biological significance. Even with the decrease in digestibility with the inclusion of cricket meal, diets remained highly digestible at greater than 80% total apparent digestibility. In conclusion, crickets were demonstrated to be an acceptable ingredient for dog diets.
Rendered products from the meat industry can provide economical quality sources of proteins to the animal and feed industry. Similar to lipids, rendered proteins are susceptible to oxidation, yet the stability of these proteins is unclear. In addition, interest in understanding how oxidative stress can impact efficiency in production animals is increasing. Recent studies show that consumption of oxidized lipids can lead to a change in the oxidative status of the animal as well as decreases in production efficiency. To date, little is known about how consumption of oxidized proteins impacts oxidative status and growth performance. The objectives of this study were to determine if feeding diets high in oxidized protein to growing pigs would: 1) impact growth performance and 2) induce oxidative stress. Thirty pigs (42 d old; initial body weight [BW] 12.49 ± 1.45 kg) were randomly assigned to one of three dietary treatments with increasing levels of oxidized protein. Spray-dried bovine plasma was used as the protein source and was either unheated upon arrival, heated at 45 °C for 4 d, or heated at 100 °C for 3 d. Diets were fed for 19 d and growth performance was measured. Blood plasma (days 0 and 18), jejunum, colon, and liver tissues (day 19) were collected to analyze for markers of oxidative stress (e.g., protein oxidation, lipid oxidation, DNA damage, and glutathione peroxidase activity). Average daily gain (ADG;P < 0.01) and average daily feed intake (ADFI;P < 0.01) had a positive linear relationship to increased protein oxidation, but there was no effect on gain to feed ratio. Furthermore, protein (P = 0.03) and fat (P < 0.01) digestibility were reduced with increased protein oxidation in the diet. Crypt depth showed a positive linear relationship with dietary protein oxidation levels (P = 0.02). A trend was observed in liver samples where pigs fed the plasma heated to 45 °C had increased lipid oxidation compared with pigs fed the plasma either unheated or heated to 100 °C (P = 0.09). DNA damage in the jejunum tended to have a linear relationship with the dietary protein oxidation level (P = 0.07). Even though results suggest dietary oxidized protein did not induce oxidative stress during short-term feeding, differences in performance, gut morphology, and digestibility are likely a result of reduced protein availability.
Pet foods may be formulated with decreased starch to meet consumer demands for less processed diets. Fats and oils may be added to low-starch diets to meet energy requirements, but little is known about its effects on canine health. The study objective was to evaluate the effects of feeding healthy adult dogs low carbohydrate, high-fat diets on apparent total tract digestibility, fecal characteristics, and overall health status. Eight adult Beagles were enrolled in a replicated 4 × 4 Latin Square design feeding trial. Dogs were randomly assigned to one of four dietary fat level treatments (T) within each period: 32% (T1), 37% (T2), 42% (T3), and 47% (T4) fat on a dry matter basis. Fat levels were adjusted with the inclusion of canola oil added to a commercial diet. Each dog was fed to exceed its energy requirement based on NRC (2006). Blood samples were analyzed for complete blood counts, chemistry profiles, and canine pancreatic lipase immunoreactivity levels. Apparent total tract digestibility improved (P < 0.05) as the fat level increased for dry matter, organic matter, fat, and gross energy. Fecal output decreased as levels of fat increased in the diet (P = 0.002). There was no effect of fat level on stool quality or short-chain fatty acid and ammonia concentrations in fecal samples (P ≥ 0.20). Blood urea nitrogen levels decreased with increased fat level (P = 0.035). No significant differences were seen in canine pancreatic lipase immunoreactivity (P = 0.110). All blood parameters remained within normal reference intervals. In summary, increased dietary fat improved apparent total tract digestibility, did not alter fecal characteristics, and maintained the health status of all dogs.
High fat diets have been reported to negatively affect the microbiota in both mice and humans. However, there is a lack of studies in canine models. The variation among the gastrointestinal (GI) tract anatomy/physiology and typical diet compositions of these animal species may lead to vastly different results. Due to the large inclusion rate of dietary fat in pet food, it is critical to understand its effects in a canine model. Therefore, the study objective was to report the effects of high fat, low carbohydrate diets on the fecal microbiota in healthy adult dogs. Eight adult beagles were randomly assigned to one of four dietary treatments within each 15-day period of a replicated 4x4 Latin Square design. Diets contained 32% (T1), 37% (T2), 42% (T3), and 47% (T4) fat. T2, T3, and T4 were created by adding increasing levels of canola oil to T1, a commercially manufactured canned canine diet, which served as the control diet. Fresh fecal samples were collected during the last 5 days of each period for microbial analysis. DNA was extracted from fecal samples and paired-end 16S rRNA gene amplicon sequencing was performed using the Illumina MiSeq platform. When comparing whole microbial communities using PERMANOVA, no significant differences were observed among treatments (P = 0.735). Individual OTUs were analyzed using the GLIMMIX procedure of SAS with fixed effects of diet and room, and the random effects of period and animal. Out of the 100 most abundant individual OTUs, 36 showed significant differences in abundance based on treatment (q < 0.05). Overall, OTUs assigned to genera related to fat digestion increased while OTUs assigned to genera involved in carbohydrate digestion decreased. In conclusion, the microbial community adapted to dietary intervention without jeopardizing the health of the animals, evaluated by body condition score, fecal characteristics, and blood parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.