Metal-complexed N-heterocyclic carbene (NHC) mechanophores are latent reactants and catalysts for a range of mechanically driven chemical responses, but mechanochemical scission of the metal−NHC bond has not been experimentally characterized. Here we report the single-molecule force spectroscopy of ligand dissociation from a pincer NHC−pyridine−NHC Pd(II) complex. The force-coupled rate constant for ligand dissociation reaches 50 s −1 at forces of approximately 930 pN. Experimental and computational observations support a dissociative, rather than associative, mechanism of ligand displacement, with rate-limiting scission of the Pd−NHC bond followed by rapid dissociation of the pyridine moiety from Pd.
The inflammatory response is a major pathological feature in most kidney diseases and often evokes compensatory mechanisms. Recent evidence suggests that TSG-6 (tumor necrosis factor-α-stimulated gene/protein-6) plays a pivotal role in anti-inflammation in various renal diseases, including immune-mediated and nonimmune-mediated renal diseases. TSG-6 has a diverse repertoire of anti-inflammatory functions: it potentiates antiplasmin activity of IαI (inter-α-inhibitor) by binding to its light chain, crosslinks hyaluronan to promote its binding to cell surface receptor CD44, and thereby regulate the migration and adhesion of lymphocytes, inhibits chemokine-stimulated transendothelial migration of neutrophils by directly interacting with the glycosaminoglycan binding site of CXCL-8 (CXC motif chemokine ligand), and upregulates COX-2 (cyclooxygenase) to produce anti-inflammatory metabolites. Hopefully, further developments can target this anti-inflammatory molecule to the kidney and harness its remedial properties. This review provides an overview of the emerging role of TSG-6 in blunting renal inflammation.
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Background: Scattered tubular-like cells (STCs) are dedifferentiated renal tubular cells endowed with progenitor-like characteristics to repair injured parenchymal cells. STCs may be damaged and rendered ineffective by renal artery stenosis (RAS), however, the underlying processes remain unclear. We hypothesized that RAS alters the epigenetic landscape on DNA and the ensuing gene transcriptional profile of swine STCs. Methods: CD24+/CD133+ STCs were isolated from pig kidneys after 10 weeks of RAS or sham (n = 3 each) and their whole 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) profiles were examined by 5mC and 5hmC immunoprecipitation sequencing (MeDIP-/hMeDIP-seq, respectively). A subsequent integrated (MeDIP/hMeDIP-seq/mRNA-seq) analysis was performed by comparing all online available gene sets using Gene Set Enrichment Analysis. Apoptosis, proteolysis, and mitochondrial structure and function were subsequently evaluated in vitro. Results: Differential expression (DE) ana lysis revealed 239 genes with higher and 236 with lower 5mC levels and 275 genes with higher and 315 with lower 5hmC levels in RAS-STCs compared to Normal-STCs (fold change ≥1.4 or ≤0.7, p ≤ 0.05). Integrated MeDiP-/hMeDIP-seq/mRNA-seq analysis identified several overlapping (DE-5mC/mRNA and DE-5hmC/mRNA levels) genes primarily implicated in apoptosis, proteolysis, and mitochondrial functions. Furthermore, RAS-STCs exhibited decreased apoptosis, mitochondrial matrix density, and ATP production, and increased intracellular amino acid concentration and ubiquitin expression. Conclusions: Renal ischemia induces epigenetic changes in apoptosis-, proteolysis-, and mitochondria-related genes, which correlate with alterations in the transcriptomic profile and corresponding function of swine STCs. These observations may contribute to developing novel targeted interventions to preserve the reparative potency of STCs in renal disease.
Autologous mesenchymal stem/stromal cells (MSCs) have demonstrated important therapeutic effects in several diseases. Cardiovascular risk factors may impair MSC mitochondrial structure and function, but the underlying mechanisms remain unknown. We hypothesized that metabolic syndrome (MetS) induces epigenetic alterations in mitochondria-related genes in swine MSCs. Pigs were fed a Lean or MetS diet (n = 6 each) for 16 weeks. MSCs were collected from subcutaneous abdominal fat, and DNA hydroxymethylation (5 hmC) profiles of mitochondria-related genes (MitoCarta-2.0) were analyzed by hydroxymethylated DNA immunoprecipitation and next-generation sequencing (hMeDIP-seq) in Lean- and MetS-MSCs untreated or treated with the epigenetic modulator vitamin (Vit)-C (n = 3 each). Functional analysis of genes with differential 5 hmC regions was performed using DAVID6.8. Mitochondrial structure (electron microscopy), oxidative stress, and membrane potential were assessed. hMeDIP-seq identified 172 peaks (associated with 103 mitochondrial genes) with higher and 416 peaks (associated with 165 mitochondrial genes) with lower 5 hmC levels in MetS-MSCs versus Lean-MSCs (≥2-fold, p < 0.05). Genes with higher 5 hmC levels in MetS + MSCs were primarily implicated in fatty acid metabolism, whereas those with lower 5 hmC levels were associated with electron transport chain activity. Vit-C increased 5 hmC levels in mitochondrial antioxidant genes, improved mitochondrial structure and membrane potential, and decreased oxidative stress. MetS alters 5 hmC levels of mitochondria-related genes in swine MSCs. Vit-C modulated 5 hmC levels in these genes and preserved mitochondrial structure and function in MetS-MSCs. These observations may contribute to development of strategies to overcome the deleterious effects of MetS on MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.