Chronic psychosocial stress is implicated in the onset and progression of noncommunicable diseases, and mechanisms underlying this relationship include alterations to the intracellular redox state. However, such changes are often investigated in isolation, with few studies adopting a system level approach. Here, male Wistar rats were exposed to 9.5 weeks of chronic unpredictable mild stress and redox status assays were subsequently performed on cardiac, hepatic, and brain tissues versus matched controls. The stressed rats displayed an anxious phenotype, with lowered plasma corticosterone levels (p = 0.04 vs. Controls) and higher plasma epinephrine concentrations (p = 0.03 vs. Controls). Our findings showed organ‐specific redox profiles, with stressed rats displaying increased myocardial lipid peroxidation (p = 0.04 vs. Controls) in the presence of elevated nonenzymatic antioxidant capacity (p = 0.04 vs. Controls). Conversely, hepatic tissues of stressed rats exhibited lowered nonenzymatic antioxidant capacity (p < 0.001 vs. Controls) together with increased superoxide dismutase (SOD) activity (p = 0.05 vs. Controls). The brain displayed region‐specific antioxidant perturbations, with increased SOD activity (p = 0.01 vs. Controls) in the prefrontal cortex of the stressed rats. These findings reveal distinct stress‐related organ‐specific vulnerability to redox perturbations and may provide novel insights into putative therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.