We report on the design and fabrication of ultrahigh current density GaN/AlN double barrier resonant tunneling diodes grown via rf-plasma assisted molecular-beam epitaxy. The device structure was grown on a metal-organic chemical vapor deposition GaN-on-sapphire template. The devices displayed repeatable room temperature negative differential resistance with peak tunneling current densities (Jp) between 637 and 930 kA/cm2. Analysis of temperature dependent measurements revealed the presence of severe self-heating effects, which allow strong phonon scattering that deteriorates the electron quantum transport. Finally, a qualitative comparison to the same structure grown on a low dislocation density freestanding GaN substrate has shown that sapphire-based templates are a feasible alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.