Objective: Pentoxifylline enhances neurite elongation in PC12 cells. This study investigated the effects of pentoxifylline on staurosporine-induced neurite elongation in PC12 cells. Materials and Methods: There were five treatment groups, including treatment group I (1 nM), treatment group II (10 nM), treatment group III (100 nM), treatment group IV (1uM), and treatment group V (10 mM of pentoxifylline), together with 214 nM staurosporine for a range of time (6, 12 and 24 hours). Cells only treated with staurosporine at a concentration of 214 nM were used as the control group. Cell proliferation, cell death, immunocytochemistry assay, and Total Neurite Length were assessed. Results: The results showed that pentoxifylline increased cell viability (p<0.05) in a dose-and time-dependent manner, and cell death assay showed that cell death decreased in a dose-and time-dependent manner (p<0.05). TNL increased significantly compared with control cells (p<0.05). Immunocytochemistry assay showed that pentoxifylline at low and high concentrations enhanced β-tubulin III and GFAP protein expression compared with control cells. Conclusion: It can be concluded that pentoxifylline has positive effects on the staurosporine-induced neurite outgrowth process in PC12 cells.
Purpose: Efforts to produce radioprotective agents of high potentials are appropriate strategies for overcoming possible IR toxicity in organisms. The present research aims to evaluate the signaling pathways and mechanisms through which arbutin exerts radioprotective effects on organisms. Methods: The databases of PubMed, Web of Sciences, Google Scholar, and Scopus were searched to find studies that reported radioprotective effects for arbutin. Besides, the data were searched within the time period from 2010 to 2020. Result: Five research articles met our criteria, which were included in the analysis based on their relevance to the topic. The present systematic review provides conclusions about various mechanisms and pathways through which arbutin induces radioprotection. Conclusions: Based on the relevant studies, various mechanisms can be proposed for inducing radioprotective effects by arbutin, including inhibition of oxidative stress, apoptosis, and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.