Fuzzy modeling of high-dimensional systems is a challenging topic. This study proposes an effective approach to data-based fuzzy modeling of high-dimensional systems. The proposed method works on the fuzzification layer and tries to use two-dimensional membership functions instead of onedimensional ones. This approach reduces fuzzy rule base radically due to using of two-dimensional membership functions which lead to reduction of parameters. The resulting fuzzy system generated by this method has the following distinct features: 1) the fuzzy system is quite simplified; 2) the fuzzy system is interpretable; 3) the dependencies between the inputs and the outputs are clearly shown. This method has successfully been applied to three classification problem and the results are compared with other works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.