We study the problem of augmenting battery-powered sensornet trees with energy-harvesting leaf nodes. Our results show that leaf nodes that are smaller in size than today's typical battery-powered sensors can harvest enough energy from ambient sources to acquire and transmit sensor readings every minute, even under poor lighting conditions. However, achieving this functionality, especially as leaf nodes scale in size, requires new platforms, protocols, and programming. Platforms must be designed around low-leakage operation, offer a richer power supply control interface for system software, and employ an unconventional energy storage hierarchy. Protocols must not only be low-power, but they must also become low-energy, which affects initial and ongoing synchronization, and periodic communications. Systems programming, and especially bootup and communications, must become low-latency, by eliminating conservative timeouts and startup dependencies, and embracing high-concurrency. Applying these principles, we show that robust, indoor, perpetual sensing is viable using off-the-shelf technology.
We study the problem of augmenting battery-powered sensornet trees with energy-harvesting leaf nodes. Our results show that leaf nodes that are smaller in size than today's typical battery-powered sensors can harvest enough energy from ambient sources to acquire and transmit sensor readings every minute, even under poor lighting conditions. However, achieving this functionality, especially as leaf nodes scale in size, requires new platforms, protocols, and programming. Platforms must be designed around low-leakage operation, offer a richer power supply control interface for system software, and employ an unconventional energy storage hierarchy. Protocols must not only be low-power, but they must also become low-energy, which affects initial and ongoing synchronization, and periodic communications. Systems programming, and especially bootup and communications, must become low-latency, by eliminating conservative timeouts and startup dependencies, and embracing high-concurrency. Applying these principles, we show that robust, indoor, perpetual sensing is viable using off-the-shelf technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.