Deciphering the carbohydrate alphabet is problematic due to its unique complexity among biomolecules. Strikingly, routine sequencing technologies—which are available for proteins and DNA and have revolutionised biology—do not exist for carbohydrates. This lack of structural tools is identified as a crucial bottleneck, limiting the full development of glycosciences and their considerable potential impact for the society. In this context, establishing generic carbohydrate sequencing methods is both a major scientific challenge and a strategic priority. Here we show that a hybrid analytical approach integrating molecular spectroscopy with mass spectrometry provides an adequate metric to resolve carbohydrate isomerisms, i.e the monosaccharide content, anomeric configuration, regiochemistry and stereochemistry of the glycosidic linkage. On the basis of the spectroscopic discrimination of MS fragments, we report the unexpected demonstration of the anomeric memory of the glycosidic bond upon fragmentation. This remarkable property is applied to de novo sequencing of underivatized oligosaccharides.
The vast array of molecular isomerisms which form the complex molecular structure of carbohydrates is the foundation of their biological versatility but defies the analytical chemist. Hyphenations of mass spectrometry with orthogonal structural characterization, such as ion mobility or ion spectroscopy, have recently shown great promise for distinction between closely related molecular structures. Yet, the lack of analytical strategies for identification of isomers present in mixtures remains a major obstacle to routine carbohydrate sequencing. In this context, an ideal workflow for glycomics would combine isomer separation and individual characterization of the molecular structure with atomistic resolution. Here we report the implementation of such a multidimensional analytical strategy, which consists of the first online coupling of high-performance liquid chromatography (HPLC)-MS and infrared multiple photon dissociation (IRMPD) spectroscopy. The performance of this novel workflow is exemplified in the case of monosaccharides (anomers) and disaccharides (regioisomers) standards. We report that the LC-MS-IRMPD approach offers a robust advanced MS diagnostic of mixtures of isomers, including carbohydrate anomers, which is critical for carbohydrate sequencing. Our results also explain the bimodal character generally observed in LC chromatograms of carbohydrates. More generally, this multidimensional analytical strategy opens the gateway to rapid identification of molecular isoforms with potential application in the "omics" fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.