Molecular dynamics simulations of the Caenorhabditis elegans transcription factor SKN-1 bound to its cognate DNA site show that the protein–DNA interface undergoes significant dynamics on the microsecond timescale. A detailed analysis of the simulation shows that movements of two key arginine side chains between the major groove and the backbone of DNA generate distinct conformational sub-states that each recognize only part of the consensus binding sequence of SKN-1, while the experimentally observed binding specificity results from a time-averaged view of the dynamic recognition occurring within this complex.
We have studied the dynamics of three transcription factor–DNA complexes using all-atom, microsecond-scale MD simulations. In each case, the salt bridges and hydrogen bond interactions formed at the protein–DNA interface are found to be dynamic, with lifetimes typically in the range of tens to hundreds of picoseconds, although some interactions, notably those involving specific binding to DNA bases, can be a hundred times longer lived. Depending on the complex studied, this dynamics may or may not lead to the existence of distinct conformational substates. Using a sequence threading technique, it has been possible to determine whether DNA sequence recognition is sensitive or not to such conformational changes, and, in one case, to show that recognition appears to be locally dependent on protein-mediated cation distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.