In parametric equations-stochastic equations are a special case-one may want to approximate the solution such that it is easy to evaluate its dependence on the parameters. Interpolation in the parameters is an obvious possibility-in this context often labeled as a collocation method. In the frequent situation where one has a "solver" for a given fixed parameter value, this may be used "nonintrusively" as a black-box component to compute the solution at all the interpolation points independently of each other. By extension, all other methods, and especially simple Galerkin methods, which produce some kind of coupled system, are often classed as "intrusive." We show how, for such "plain vanilla" Galerkin formulations, one may solve the coupled system in a nonintrusive way, and even the simplest form of block-solver has comparable efficiency. This opens at least two avenues for possible speed-up: first, to benefit from the coupling in the iteration by using more sophisticated block-solvers and, second, the possibility of nonintrusive successive rank-one updates as in the proper generalized decomposition (PGD).
International audienceWe present a complete numerical strategy based on tensor approximation techniques for the solution of numerical homogenization problems with geometrical data coming from high resolution images. We first introduce specific numerical treatments for the translation of image-based homogenization problems into a tensor framework. It includes the tensor approximations in suitable tensor formats of fields of material properties or indicator functions of multiple material phases recovered from segmented images. We then introduce some variants of proper generalized decomposition (PGD) methods for the construction of tensor decompositions in different tensor formats of the solution of boundary value problems. A new definition of PGD is introduced which allows the progressive construction of a Tucker decomposition of the solution. This tensor format is well adapted to the present application and improves convergence properties of tensor decompositions. Finally, we use a dual-based error estimator on quantities of interest which was recently introduced in the context of PGD. We exhibit its specificities when it is used for assessing the error on the homogenized properties of the heterogeneous material. We also provide a complete goal-oriented adaptive strategy for the progressive construction of tensor decompositions (of primal and dual solutions) yielding to predictions of homogenized quantities with a prescribed accuracy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.