The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or cross-product of two oscillating electric fields. However, until now it has been generally assumed that heating alone, not represented as a vector at all, cannot result in a deterministic reversal of magnetization, although it may assist this process. Here we show numerically and demonstrate experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field.
Arrays of dipolar coupled ferromagnetic islands arranged in specific geometries provide ideal systems to directly study frustration. We have examined with photoemission electron microscopy the magnetic configurations in three basic building blocks of an artificial kagome spin ice consisting of one, two, and three rings. The kagome spin ice arrangement is particularly interesting because it is highly frustrated and the three interactions at a vertex are equivalent. Employing dipolar energy calculations, we are able to make a full characterization of the magnetic states and therefore identify the lowest energy states. Experimentally we find that the ice rule is always obeyed even at low dipolar coupling strengths. However, as the number of rings increases there is a drastic decrease in the ability to achieve the low-energy states via demagnetization, a behavior also identified in the magnetization reversal. This carries the implication that the ground state will never be achieved in the infinite system. Finally, we show that at low coupling, the applied field direction governs the resulting states. This work opens the door to a novel class of systems for future spintronic applications.
Here the major upgrades of the femtoslicing facility at BESSY II are reviewed, giving a tutorial on how elliptical-polarized ultrashort soft X-ray pulses from electron storage rings are generated at high repetition rates. Employing a 6 kHz femtosecond-laser system consisting of two amplifiers that are seeded by one Ti:Sa oscillator, the total average flux of photons of 100 fs duration (FWHM) has been increased by a factor of 120 to up to 10 6 photons s À1 (0.1% bandwidth) À1 on the sample in the range from 250 to 1400 eV. Thanks to a new beamline design, a factor of 20 enhanced flux and improvements of the stability together with the top-up mode of the accelerator have been achieved. The previously unavoidable problem of increased picosecond-background at higher repetition rates, caused by 'halo' photons, has also been solved by hopping between different 'camshaft' bunches in a dedicated fill pattern ('3 + 1 camshaft fill') of the storage ring. In addition to an increased X-ray performance at variable (linear and elliptical) polarization, the sample excitation in pumpprobe experiments has been considerably extended using an optical parametric amplifier that supports the range from the near-UV to the far-IR regime. Dedicated endstations covering ultrafast magnetism experiments based on timeresolved X-ray circular dichroism have been either upgraded or, in the case of time-resolved resonant soft X-ray diffraction and reflection, newly constructed and adapted to femtoslicing requirements. Experiments at low temperatures down to 6 K and magnetic fields up to 0.5 T are supported. The FemtoSpeX facility is now operated as a 24 h user facility enabling a new class of experiments in ultrafast magnetism and in the field of transient phenomena and phase transitions in solids.
Ultrafast magnetization reversal driven by femtosecond laser pulses has been shown to be a promising way to write information. Seeking to improve the recording density has raised intriguing fundamental questions about the feasibility of combining ultrafast temporal resolution with sub-wavelength spatial resolution for magnetic recording. Here we report on the experimental demonstration of nanoscale sub-100 ps all-optical magnetization switching, providing a path to sub-wavelength magnetic recording. Using computational methods, we reveal the feasibility of nanoscale magnetic switching even for an unfocused laser pulse. This effect is achieved by structuring the sample such that the laser pulse, via both refraction and interference, focuses onto a localized region of the structure, the position of which can be controlled by the structural design. Time-resolved photo-emission electron microscopy studies reveal that nanoscale magnetic switching employing such focusing can be pushed to the sub-100 ps regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.