SummaryMethane is an important greenhouse gas and microbes in the environment play major roles in both global methane emissions and terrestrial sinks. However, a full mechanistic understanding of the response of the methane cycle to global change is lacking. Recent studies suggest that a number of biological and environmental processes can influence the net flux of methane from soils to the atmosphere but the magnitude and direction of their impact are still debated. Here, we synthesize recent knowledge on soil microbial and biogeochemical process and the impacts of climate change factors on the soil methane cycle. We focus on (i) identification of the source and magnitude of methane flux and the global factors that may change the flux rate and magnitude in the future, (ii) the microbial communities responsible for methane production and terrestrial sinks, and (iii) how they will respond to future climatic scenarios and the consequences for feedback responses at a global scale. We also identify the research gaps in each of the topics identified above, provide evidence which can be used to demonstrate microbial regulation of methane cycle and suggest that incorporation of microbial data from emerging -omic technologies could be harnessed to increase the predictive power of simulation models.
Atmospheric carbon dioxide enrichment (eCO 2) can enhance plant carbon uptake and growth 1,2,3,4,5 , thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO 2 concentration 6. While evidence gathered from young aggrading forests has generally indicated a strong CO 2 fertilization effect on biomass growth 3,4,5 , it is unclear whether mature forests respond to eCO 2 in a similar way. In mature trees and forest stands 7,8,9,10 , photosynthetic uptake has been found to increase under eCO 2 without any apparent accompanying growth response, leaving an open question about the fate of additional carbon fixed under eCO 2 4,5,7,8,9,10,11. Here, using data from the first ecosystemscale Free-Air CO 2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responds to four years of eCO 2 exposure. We show that, although the eCO 2 treatment of ambient +150 ppm (+38%) induced a 12% (+247 g C m-2 yr-1) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for ~50% of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO 2 , and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO 2 fertilization as a driver of increased carbon sinks in global forests. Main text Globally, forests act as a large carbon sink, absorbing a significant portion of the anthropogenic CO 2 emissions 1,12 , an ecosystem service that has tremendous social and
A multiplex terminal restriction fragment length polymorphism (M-TRFLP) fingerprinting method was developed and validated for simultaneous analysis of the diversity and community structure of two or more microbial taxa (up to four taxa). The reproducibility and robustness of the method were examined using soil samples collected from different habitats. DNA was PCR amplified separately from soil samples using individual taxon-specific primers for bacteria, archaea, and fungi. The same samples were also subjected to a multiplex PCR with the primers for all three taxa. The terminal restriction fragment length polymorphism profiles generated for the two sets of PCR products were almost identical not only in terms of the presence of peaks but also in terms of the relative peak intensity. The M-TRFLP method was then used to investigate rhizosphere bacterial, fungal, and rhizobial/agrobacterial communities associated with the dwarf shrub Calluna vulgaris growing in either open moorland, a mature pine forest, or a transition zone between these two habitats containing naturally regenerating pine trees. Rhizosphere microbial communities associated with Vaccinium myrtillus collected from the native pine forest were also investigated. In this study, individual PCR products from the three taxa were also pooled before restriction digestion and fragment size analysis. The terminal restriction fragment length polymorphism profiles obtained with PCR products amplified individually and with multiplexed and pooled PCR products were found to be consistent with each other in terms of the number, position, and relative intensity of peaks. The results presented here confirm that M-TRFLP analysis is a highly reproducible and robust molecular tool for simultaneous investigation of multiple taxa, which allows more complete and higher resolution of microbial communities to be obtained more rapidly and economically.
Agronomic practices such as crop residue return and additional nutrient supply are recommended to increase soil organic carbon (SOC) in arable farmlands. However, changes in the priming effect (PE) on native SOC mineralization in response to integrated inputs of residue and nutrients are not fully known. This knowledge gap along with a lack of understanding of microbial mechanisms hinders the ability to constrain models and to reduce the uncertainty to predict carbon (C) sequestration potential. Using a C-labeled wheat residue, this 126-day incubation study examined the dominant microbial mechanisms that underpin the PE response to inputs of wheat residue and nutrients (nitrogen, phosphorus and sulfur) in two contrasting soils. The residue input caused positive PE through "co-metabolism," supported by increased microbial biomass, C and nitrogen (N) extracellular enzyme activities (EEAs), and gene abundance of certain microbial taxa (Eubacteria, β-Proteobacteria, Acidobacteria, and Fungi). The residue input could have induced nutrient limitation, causing an increase in the PE via "microbial nutrient mining" of native soil organic matter, as suggested by the low C-to-nutrient stoichiometry of EEAs. At the high residue, exogenous nutrient supply (cf. no-nutrient) initially decreased positive PE by alleviating nutrient mining, which was supported by the low gene abundance of Eubacteria and Fungi. However, after an initial decrease in PE at the high residue with nutrients, the PE increased to the same magnitude as without nutrients over time. This suggests the dominance of "microbial stoichiometry decomposition," supported by higher microbial biomass and EEAs, while Eubacteria and Fungi increased over time, at the high residue with nutrients cf. no-nutrient in both soils. Our study provides novel evidence that different microbial mechanisms operate simultaneously depending on organic C and nutrient availability in a residue-amended soil. Our results have consequences for SOC modeling and integrated nutrient management employed to increase SOC in arable farmlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.